IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i4p1014-1024.html
   My bibliography  Save this article

A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data

Author

Listed:
  • Cécile Proust
  • Hélène Jacqmin-Gadda
  • Jeremy M. G. Taylor
  • Julien Ganiayre
  • Daniel Commenges

Abstract

No abstract is available for this item.

Suggested Citation

  • Cécile Proust & Hélène Jacqmin-Gadda & Jeremy M. G. Taylor & Julien Ganiayre & Daniel Commenges, 2006. "A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1014-1024, December.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:4:p:1014-1024
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00573.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
    2. N. Longford & B. Muthén, 1992. "Factor analysis for clustered observations," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 581-597, December.
    3. Gerhard Arminger & Bengt Muthén, 1998. "A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 271-300, September.
    4. D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
    5. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "Generalized multilevel structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 167-190, June.
    6. Jason Roy & Xihong Lin, 2000. "Latent Variable Models for Longitudinal Data with Multiple Continuous Outcomes," Biometrics, The International Biometric Society, vol. 56(4), pages 1047-1054, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    2. Kari R. Hart & Teng Fei & John J. Hanfelt, 2021. "Scalable and robust latent trajectory class analysis using artificial likelihood," Biometrics, The International Biometric Society, vol. 77(3), pages 1118-1128, September.
    3. Commenges Daniel & Proust-Lima Cécile & Samieri Cécilia & Liquet Benoit, 2015. "A Universal Approximate Cross-Validation Criterion for Regular Risk Functions," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 51-67, May.
    4. Dantan Etienne & Proust-Lima Cécile & Letenneur Luc & Jacqmin-Gadda Helene, 2008. "Pattern Mixture Models and Latent Class Models for the Analysis of Multivariate Longitudinal Data with Informative Dropouts," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-26, July.
    5. Daniel Commenges, 2019. "Dealing with death when studying disease or physiological marker: the stochastic system approach to causality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 381-405, July.
    6. Emilie Lévêque & Aude Lacourt & Viviane Philipps & Danièle Luce & Pascal Guénel & Isabelle Stücker & Cécile Proust-Lima & Karen Leffondré, 2020. "A new trajectory approach for investigating the association between an environmental or occupational exposure over lifetime and the risk of chronic disease: Application to smoking, asbestos, and lung ," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-14, August.
    7. Dongbing Lai & Huiping Xu & Daniel Koller & Tatiana Foroud & Sujuan Gao, 2016. "A multivariate finite mixture latent trajectory model with application to dementia studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2503-2523, October.
    8. B. N. Sánchez & E. A. Houseman & L. M. Ryan, 2009. "Residual-Based Diagnostics for Structural Equation Models," Biometrics, The International Biometric Society, vol. 65(1), pages 104-115, March.
    9. Jiang, Jiakun & Lin, Huazhen & Zhong, Qingzhi & Li, Yi, 2022. "Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    11. Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    2. Ling Zhou & Huazhen Lin & Xinyuan Song & Yi Li, 2014. "Selection of Latent Variables for Multiple Mixed-outcome Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1064-1082, December.
    3. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
    4. David B. Dunson & M. Watson & Jack A. Taylor, 2003. "Bayesian Latent Variable Models for Median Regression on Multiple Outcomes," Biometrics, The International Biometric Society, vol. 59(2), pages 296-304, June.
    5. Ziyue Liu & Anne R. Cappola & Leslie J. Crofford & Wensheng Guo, 2014. "Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 108-118, March.
    6. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    7. Asim Ansari & Kamel Jedidi & Sharan Jagpal, 2000. "A Hierarchical Bayesian Methodology for Treating Heterogeneity in Structural Equation Models," Marketing Science, INFORMS, vol. 19(4), pages 328-347, August.
    8. H. Zhang & Q. Yu & C. Feng & D. Gunzler & P. Wu & X. M. Tu, 2012. "A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 2067-2079, June.
    9. Silvia Bianconcini & Silvia Cagnone, 2012. "A General Multivariate Latent Growth Model With Applications to Student Achievement," Journal of Educational and Behavioral Statistics, , vol. 37(2), pages 339-364, April.
    10. Che Wan Jasimah Bt Wan Mohamed Radzi & Hashem Salarzadeh Jenatabadi & Maisarah Binti Hasbullah, 2015. "Firm Sustainability Performance Index Modeling," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    11. Lee, Sik-Yum & Song, Xin-Yuan, 2008. "On Bayesian estimation and model comparison of an integrated structural equation model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4814-4827, June.
    12. David B. Dunson & Zhen Chen & Jean Harry, 2003. "A Bayesian Approach for Joint Modeling of Cluster Size and Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 59(3), pages 521-530, September.
    13. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    14. Engel, Christoph & Kirchkamp, Oliver, 2019. "How to deal with inconsistent choices on multiple price lists," Journal of Economic Behavior & Organization, Elsevier, vol. 160(C), pages 138-157.
    15. Siliang Zhang & Yunxiao Chen, 2022. "Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1473-1502, December.
    16. Zhang, Siliang & Chen, Yunxiao, 2022. "Computation for latent variable model estimation: a unified stochastic proximal framework," LSE Research Online Documents on Economics 114489, London School of Economics and Political Science, LSE Library.
    17. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    18. B. N. Sánchez & E. A. Houseman & L. M. Ryan, 2009. "Residual-Based Diagnostics for Structural Equation Models," Biometrics, The International Biometric Society, vol. 65(1), pages 104-115, March.
    19. Amy H. Herring & Juan Yang, 2007. "Bayesian Modeling of Multiple Episode Occurrence and Severity with a Terminating Event," Biometrics, The International Biometric Society, vol. 63(2), pages 381-388, June.
    20. Ralitza V. Gueorguieva, 2005. "Comments about Joint Modeling of Cluster Size and Binary and Continuous Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 61(3), pages 862-866, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:4:p:1014-1024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.