IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v7y2020i2p253-260.html
   My bibliography  Save this article

Evaluation of Tigernut Waste for Production of Bioproducts

Author

Listed:
  • Adejoju Omodolapo Adedara

    (Department of Chemistry, School of Sciences, The Federal University of Technology, PMB 704,Akure, Nigeria)

  • Helen Olayinka Ogunsuyi

    (Department of Chemistry, School of Sciences, The Federal University of Technology, PMB 704,Akure, Nigeria)

  • Christiana Arinola Akinnawo

    (Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, South Africa)

Abstract

Conversion of biomass into fuels and value added bioproducts is highly essential considering the menace of the pollution associated with fossil sourced fuels and Chemicals. Biomass conversion technology is an emerging innovation in the global energy sector. Besides the inherent advantages identified with biomass resources such as renewability, abundance and intoxicity, the resource is a means of sure way of growing national economy. In this study, assessment of monomeric sugars in tigernut chaff and its potential for the production of some bioproducts (biodiesel and bioethanol) was investigated. Tigernut chaff was defatted by solvent extraction method; the oil was trans-esterified using homogenous and heterogeneous catalyst obtained from waste chicken egg shell. The biodiesel production was optimized by varying the reaction time, catalyst type and concentration. The defatted chaff was hydrolysed using 4% H2SO4. The effect of particle size and reaction time on the release of monomeric sugars as well as sugar degradation products in the hydrolyzed sample was evaluated. Identification and quantification of the monomeric sugar was done using a dual wavelength UV-Visible spectrophotometer. The hydrolysed biomass was fermented to bioethanol using Saccharomyces cerevisea and the crude bioethanol was purified with Bio-CaO. From the results obtained, the optimum yield of the biodiesel was established at 0.9 w/v catalyst concentration, 600C reaction temperature and 60min reaction time with potassium methoxide catalyst. The properties of the biodiesel obtained were consistent with the specifications of American Standard for Biodiesel Testing Materials (ASTM D 6751). The hydrolysis was found to be most effective at 1.11μm particle size and 120 min reaction time. The results revealed that tigernut waste can be used to produce biofuels and also as platform material for domestic and industrial purposes due to the concentration of monomeric sugar present it contains.

Suggested Citation

  • Adejoju Omodolapo Adedara & Helen Olayinka Ogunsuyi & Christiana Arinola Akinnawo, 2020. "Evaluation of Tigernut Waste for Production of Bioproducts," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 7(2), pages 253-260, February.
  • Handle: RePEc:bjc:journl:v:7:y:2020:i:2:p:253-260
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-7-issue-2/253-260.pdf
    Download Restriction: no

    File URL: https://www.rsisinternational.org/virtual-library/papers/evaluation-of-tigernut-waste-for-production-of-bioproducts/?utm_source=Netcore&utm_medium=Email&utm_content=sscollections25oct&utm_campaign=First
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    2. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    3. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    4. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    5. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    6. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    7. Lau, Pak-Chung & Kwong, Tsz-Lung & Yung, Ka-Fu, 2022. "Manganese glycerolate catalyzed simultaneous esterification and transesterification: The kinetic and mechanistic study, and application in biodiesel and bio-lubricants synthesis," Renewable Energy, Elsevier, vol. 189(C), pages 549-558.
    8. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    9. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    10. Lam, Man Kee & Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2009. "Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1456-1464, August.
    11. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    12. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    13. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    14. De Corato, Ugo & De Bari, Isabella & Viola, Egidio & Pugliese, Massimo, 2018. "Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 326-346.
    15. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.
    16. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    18. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    19. Palmer, Jacob D. & Brigham, Christopher J., 2016. "Feasibility of triacylglycerol production for biodiesel, utilizing Rhodococcus opacus as a biocatalyst and fishery waste as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 922-928.
    20. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:7:y:2020:i:2:p:253-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.