IDEAS home Printed from https://ideas.repec.org/a/bba/j00005/v3y2025i1p1-6d425.html
   My bibliography  Save this article

Which Came First, The Chicken or the Egg? What about Ducks?: Granger Causality Using Philippine Poultry Data

Author

Listed:
  • John Francis Diaz

    (Department of Finance and Accounting, Asian Institute of Management, Makati, Philippines)

Abstract

The paper studies Philippine poultry data and revisits the chicken or the egg causality problem to include ducks data. Using quarterly Philippine poultry production time-series from the first quarter of 1980 to the last quarter of 2014, this research finds that chickens came from eggs, which is consistent with the earlier statistical results of Thurman and Fisher (1988), and genetics-based conclusions of Eriksson et al. (2008). However, no conclusive evidence was found using the Philippine duck and duck eggs data. The chicken or the egg conundrum demonstrates the power of Granger causality testing in answering questions of temporal ordering that has various causal applications using macroeconomic, financial, and agricultural time-series data.

Suggested Citation

  • John Francis Diaz, 2025. "Which Came First, The Chicken or the Egg? What about Ducks?: Granger Causality Using Philippine Poultry Data," Journal of Economic Statistics, Anser Press, vol. 3(1), pages 1-6, March.
  • Handle: RePEc:bba:j00005:v:3:y:2025:i:1:p:1-6:d:425
    as

    Download full text from publisher

    File URL: https://www.anserpress.org/journal/jes/3/1/18/pdf
    Download Restriction: no

    File URL: https://www.anserpress.org/journal/jes/3/1/18
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Tae-Hwy & Yang, Weiping, 2014. "Granger-causality in quantiles between financial markets: Using copula approach," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 70-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Michael McAleer, 2017. "A Simple Test for Causality in Volatility," Econometrics, MDPI, vol. 5(1), pages 1-5, March.
    2. Bouri, Elie & Gupta, Rangan & Lau, Chi Keung Marco & Roubaud, David & Wang, Shixuan, 2018. "Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 297-307.
    3. Danau, Daniel, 2020. "Prudence and preference for flexibility gain," European Journal of Operational Research, Elsevier, vol. 287(2), pages 776-785.
    4. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    5. Zhang, Dongna & Chen, Xihui Haviour & Lau, Chi Keung Marco & Xu, Bing, 2023. "Implications of cryptocurrency energy usage on climate change," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    6. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    7. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto Calogero, 2017. "Estimation and model-based combination of causality networks," SAFE Working Paper Series 165, Leibniz Institute for Financial Research SAFE.
    8. Talbi, Marwa & de Peretti, Christian & Belkacem, Lotfi, 2020. "Dynamics and causality in distribution between spot and future precious metals: A copula approach," Resources Policy, Elsevier, vol. 66(C).
    9. Emmanuel Joel Aikins Abakah & Aviral Kumar Tiwari & Chi‐Chuan Lee & Matthew Ntow‐Gyamfi, 2023. "Quantile price convergence and spillover effects among Bitcoin, Fintech, and artificial intelligence stocks," International Review of Finance, International Review of Finance Ltd., vol. 23(1), pages 187-205, March.
    10. Tan T. M. Le & Franck Martin & Duc K. Nguyen, 2018. "Dynamic connectedness of global currencies: a conditional Granger-causality approach," Economics Working Paper Archive (University of Rennes & University of Caen) 2018-04, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    11. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    12. Aharon, David Y. & Demir, Ender & Lau, Chi Keung Marco & Zaremba, Adam, 2022. "Twitter-Based uncertainty and cryptocurrency returns," Research in International Business and Finance, Elsevier, vol. 59(C).
    13. Elie Bouri & Rangan Gupta & Chi keung marco Lau & David Roubaud, 2021. "Risk aversion and Bitcoin returns in extreme quantiles," Economics Bulletin, AccessEcon, vol. 41(3), pages 1374-1386.
    14. Chen, Qitong & Zhu, Huiming & Yu, Dongwei & Hau, Liya, 2022. "How does investor attention matter for crude oil prices and returns? Evidence from time-frequency quantile causality analysis," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    15. Wanat, Stanisław & Papież, Monika & Śmiech, Sławomir, 2014. "Causality in distribution between European stock markets and commodity prices: Using independence test based on the empirical copula," MPRA Paper 57706, University Library of Munich, Germany.
    16. Dastgir, Shabbir & Demir, Ender & Downing, Gareth & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test," Finance Research Letters, Elsevier, vol. 28(C), pages 160-164.
    17. Elie Bouri & Rangan Gupta & Chi Keung Marco Lau & David Roubaud, 2019. "Risk Aversion and Bitcoin Returns in Normal, Bull, and Bear Markets," Working Papers 201927, University of Pretoria, Department of Economics.
    18. Hong Cheng & Yunqing Wang & Yihong Wang & Tinggan Yang, 2022. "Inferring Causal Interactions in Financial Markets Using Conditional Granger Causality Based on Quantile Regression," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 719-748, February.
    19. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    20. Roberto Fuentes-Mart'inez & Irene Crimaldi & Armando Rungi, 2024. "Non-linear dependence and Granger causality: A vine copula approach," Papers 2409.15070, arXiv.org, revised May 2025.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bba:j00005:v:3:y:2025:i:1:p:1-6:d:425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ramona Wang (email available below). General contact details of provider: https://www.anserpress.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.