IDEAS home Printed from https://ideas.repec.org/a/ags/ijaeri/356867.html
   My bibliography  Save this article

Greenhouse Gases Production Potential During Anaerobic Biodigestion of Manure from Cattle Fed with Different Feed Additives and Their Combinations

Author

Listed:
  • Guilherme Acácio de Sene
  • Fábio Luís Henrique
  • Flavio Perna Junior
  • Ramos Jorge Tseu
  • Paulo Henrique Mazza Rodrigues

Abstract

Manure management, particularly anaerobic digestion, is an alternative for reducing the environmental impacts of cattle raising and energy generation. The aim of this study was to produce biogas and biofertilizer from waste from Nellore cows fed sodium monensin, essential oils, exogenous enzymes, and their combinations. The experimental batch-type biodigesters were placed inside a climatic chamber (30–35 °C). They were organized in a completely randomized design in a 2 × 2 × 2 factorial arrangement, with waste tested from Nellore cows fed the presence or absence of essential oil, exogenous enzyme, and monensin, with four repetitions totaling 32 experimental units (represented by the manure of the animals that received the different additives and their associations). The use of monensin reduced the amount of N inserted into the biodigesters, reduced the nutrient removal efficiency, and reduced biogas production by 39.26%, in addition to altering the composition of the biofertilizer produced. The other tested additives together with the combination of additives did not influence the biodigestion process. Therefore, the addition of monensin reduces nutrient removal efficiency, compromises biogas production, and reduces the concentration of nutrients in the biofertilizer, while essential oils and enzymes do not affect the biodigestion process. In addition, no associative effect was observed among the tested additives.

Suggested Citation

  • Guilherme Acácio de Sene & Fábio Luís Henrique & Flavio Perna Junior & Ramos Jorge Tseu & Paulo Henrique Mazza Rodrigues, 2025. "Greenhouse Gases Production Potential During Anaerobic Biodigestion of Manure from Cattle Fed with Different Feed Additives and Their Combinations," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 11(2), March.
  • Handle: RePEc:ags:ijaeri:356867
    DOI: 10.22004/ag.econ.356867
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/356867/files/ijaer_11__22.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.356867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mshandete, Anthony & Björnsson, Lovisa & Kivaisi, Amelia K. & Rubindamayugi, M.S.T. & Mattiasson, Bo, 2006. "Effect of particle size on biogas yield from sisal fibre waste," Renewable Energy, Elsevier, vol. 31(14), pages 2385-2392.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, J.C. & Oliveira, J.V. & Alves, M.M., 2016. "Response surface design to study the influence of inoculum, particle size and inoculum to substrate ratio on the methane production from Ulex sp," Renewable Energy, Elsevier, vol. 96(PB), pages 1071-1077.
    2. Ali Heidarzadeh Vazifehkhoran & Jin Mi Triolo & Søren Ugilt Larsen & Kasper Stefanek & Sven G. Sommer, 2016. "Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids," Energies, MDPI, vol. 9(5), pages 1-11, May.
    3. Nathaniel Sawyerr & Cristina Trois & Tilahun Workneh & Vincent Okudoh, 2019. "An Overview of Biogas Production: Fundamentals, Applications and Future Research," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 105-116.
    4. Momoh, O.L.Y. & Ouki, S., 2018. "Development of a novel fractal-like kinetic model for elucidating the effect of particle size on the mechanism of hydrolysis and biogas yield from ligno-cellulosic biomass," Renewable Energy, Elsevier, vol. 118(C), pages 71-83.
    5. Lin, Long & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2018. "Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 151-167.
    6. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    7. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    8. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    9. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    10. Leitner, Viktoria & Lindorfer, Johannes, 2016. "Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility," Renewable Energy, Elsevier, vol. 87(P1), pages 193-202.
    11. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    12. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    13. Thorin, Eva & Lindmark, Johan & Nordlander, Eva & Odlare, Monica & Dahlquist, Erik & Kastensson, Jan & Leksell, Niklas & Pettersson, Carl-Magnus, 2012. "Performance optimization of the Växtkraft biogas production plant," Applied Energy, Elsevier, vol. 97(C), pages 503-508.
    14. Lindmark, Johan & Leksell, Niklas & Schnürer, Anna & Thorin, Eva, 2012. "Effects of mechanical pre-treatment on the biogas yield from ley crop silage," Applied Energy, Elsevier, vol. 97(C), pages 498-502.
    15. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Tedesco, Silvia & Mac Lochlainn, Dubhaltach & Olabi, Abdul Ghani, 2014. "Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production," Energy, Elsevier, vol. 76(C), pages 857-862.
    17. Tracey Anne Colley & Judith Valerian & Michael Zwicky Hauschild & Stig Irving Olsen & Morten Birkved, 2021. "Addressing Nutrient Depletion in Tanzanian Sisal Fiber Production Using Life Cycle Assessment and Circular Economy Principles, with Bioenergy Co-Production," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    18. Muthita Tepsour & Nikannapas Usmanbaha & Thiwa Rattanaya & Rattana Jariyaboon & Sompong O-Thong & Poonsuk Prasertsan & Prawit Kongjan, 2019. "Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion," Energies, MDPI, vol. 12(22), pages 1-14, November.
    19. Wang, Feng & Xu, Fuqing & Liu, Zhe & Cui, Zhifang & Li, Yebo, 2019. "Effects of outdoor dry bale storage conditions on corn stover and the subsequent biogas production from anaerobic digestion," Renewable Energy, Elsevier, vol. 134(C), pages 276-283.
    20. Okoro- Shekwaga, Cynthia Kusin & Turnell Suruagy, Mariana Vieira & Ross, Andrew & Camargo- Valero, Miller Alonso, 2020. "Particle size, inoculum-to-substrate ratio and nutrient media effects on biomethane yield from food waste," Renewable Energy, Elsevier, vol. 151(C), pages 311-321.

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijaeri:356867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://ijaer.in/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.