IDEAS home Printed from https://ideas.repec.org/a/adp/artoaj/v23y2019i3p344-350.html
   My bibliography  Save this article

Pyroligneous Acid Produced by Rice Husk Using the Charcoal Processing System with Internal Combustion Furnace

Author

Listed:
  • Wei-Puo Kuo
  • Yi-Hong Lin

    (Department of Mechanical Engineering, National Pingtung University of Science and Technology, Taiwan)

  • Yutaka Kitamura

    (Faculty of Life and Environmental Sciences, University of Tsukuba, Japan)

  • Yoshiyuki Hara

    (Hokkaido Central Agricultural Experiment Station, Japan)

  • Ching-Chen Hsieh

    (Biomechatronics Engineering, National Pingtung University of Science and Technology, Taiwan)

  • Chen-Pin Chen

    (QI-MEI Cooperative of friendly farming manager, Taiwan)

Abstract

This paper reports the first use of a charcoal processing system with an internal combustion furnace (CPSICF) to produce pyroligneous acid from rice husk, called rice husk vinegar. The gate width in CPSICF influenced air intake, which directly affected the temperature of the furnace that played a key role during pyrolysis. The process characteristics of rice husk vinegar collected from (A) the internal combustion furnace cover and (B) chimney are discussed separately. The total rice husk vinegar weight was 13.13-14.08 kg with cooling water but only 7.23 kg without cooling water. The pH value and acidity ranges were 3.1-3.6 and 5.9%-8.3%, respectively. The tar content was 1.3-3.9 but was 6.1 in the vinegar obtained from the chimney without cooling water.

Suggested Citation

  • Wei-Puo Kuo & Yi-Hong Lin & Yutaka Kitamura & Yoshiyuki Hara & Ching-Chen Hsieh & Chen-Pin Chen, 2019. "Pyroligneous Acid Produced by Rice Husk Using the Charcoal Processing System with Internal Combustion Furnace," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 23(3), pages 344-350, November.
  • Handle: RePEc:adp:artoaj:v:23:y:2019:i:3:p:344-350
    DOI: 10.19080/ARTOAJ.2019.23.556238
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/artoaj/pdf/ARTOAJ.MS.ID.556238.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/artoaj/ARTOAJ.MS.ID.556238.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/ARTOAJ.2019.23.556238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    2. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    3. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Hongbo Du, & Deng, Fang & Kommalapati, Raghava R. & Amarasekara, Ananda S., 2020. "Iron based catalysts in biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Zeng, Kuo & Wang, Biao & Xia, Shengpeng & Cui, Chaoxian & Wang, Chenyang & Zheng, Anqing & Zhao, Kun & Zhao, Zengli & Li, Haibin & Isobaev, M.D., 2022. "Towards directional pyrolysis of xylan: Understanding the roles of alkali/alkaline earth metals and pyrolysis temperature," Energy, Elsevier, vol. 254(PA).
    6. Kung, Chih-Chun & Fei, Chengcheng J. & McCarl, Bruce A. & Fan, Xinxin, 2022. "A review of biopower and mitigation potential of competing pyrolysis methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Peters, Jens F. & Banks, Scott W. & Bridgwater, Anthony V. & Dufour, Javier, 2017. "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied Energy, Elsevier, vol. 188(C), pages 595-603.
    8. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    9. Kalu Samuel Ukanwa & Kumar Patchigolla & Ruben Sakrabani & Edward Anthony & Sachin Mandavgane, 2019. "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
    10. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    11. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    12. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    13. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & Ameixa, Marcelo, 2022. "Valorization of forest waste biomass by catalyzed pyrolysis," Energy, Elsevier, vol. 243(C).
    14. Cristina Moliner & Filippo Marchelli & Elisabetta Arato, 2020. "Current Status of Energy Production from Solid Biomass in North-West Italy," Energies, MDPI, vol. 13(17), pages 1-29, August.
    15. Xu, Bang & Argyle, Morris D. & Shi, Xiufeng & Goroncy, Alexander K. & Rony, Asif Hasan & Tan, Gang & Fan, Maohong, 2020. "Effects of mixture of CO2 /CH4 as pyrolysis atmosphere on pine wood pyrolysis products," Renewable Energy, Elsevier, vol. 162(C), pages 1243-1254.
    16. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    18. Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Arancibia-Bulnes, Camilo A. & Valadés-Pelayo, Patricio J. & Villafán-Vidales, Heidi Isabel, 2021. "Solar integrated hydrothermal processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Jayanto Kumar Sarkar & Qingyue Wang, 2020. "Different Pyrolysis Process Conditions of South Asian Waste Coconut Shell and Characterization of Gas, Bio-Char, and Bio-Oil," Energies, MDPI, vol. 13(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:artoaj:v:23:y:2019:i:3:p:344-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.