IDEAS home Printed from https://ideas.repec.org/r/ses/arsjes/1994-iv-4.html
   My bibliography  Save this item

Technical Efficiency and Productivity Growth in an Era of Deregulation: the Case of Airlines

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
  2. Boon Liat Lee & Clevo Wilson & Carl A. Pasurka & Hidemichi Fujii & Shunsuke Managi, 2017. "Sources of airline productivity from carbon emissions: an analysis of operational performance under good and bad outputs," Journal of Productivity Analysis, Springer, vol. 47(3), pages 223-246, June.
  3. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
  4. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
  5. Duygun, Meryem & Prior, Diego & Shaban, Mohamed & Tortosa-Ausina, Emili, 2016. "Disentangling the European airlines efficiency puzzle: A network data envelopment analysis approach," Omega, Elsevier, vol. 60(C), pages 2-14.
  6. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
  7. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
  8. Huang, Fei & Zhou, Dequn & Hu, Jin-Li & Wang, Qunwei, 2020. "Integrated airline productivity performance evaluation with CO2 emissions and flight delays," Journal of Air Transport Management, Elsevier, vol. 84(C).
  9. Barros, Carlos P. & Liang, Qi Bin & Peypoch, Nicolas, 2013. "The technical efficiency of US Airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 139-148.
  10. Boon L Lee & Clevo Wilson & Carl A Pasurka, Jr, 2013. "The Good, the Bad and the Efficient: Productivity, efficiency and technical change in the Airline Industry, 2004:2008," School of Economics and Finance Discussion Papers and Working Papers Series 299, School of Economics and Finance, Queensland University of Technology.
  11. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
  12. Wen‐Min Lu & Qian Long Kweh & Mohammad Nourani & Jui‐Min Shih, 2020. "Major weapons procurement: An efficiency‐based approach for the selection of fighter jets," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 574-585, June.
  13. Tsionas, Mike G. & Chen, Zhongfei & Wanke, Peter, 2017. "A structural vector autoregressive model of technical efficiency and delays with an application to Chinese airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 1-10.
  14. Tim Coelli & Sergio Perelman & Elliot Romano, 1999. "Accounting for Environmental Influences in Stochastic Frontier Models: With Application to International Airlines," Journal of Productivity Analysis, Springer, vol. 11(3), pages 251-273, June.
  15. Assaf, A. George & Josiassen, Alexander, 2012. "European vs. U.S. airlines: Performance comparison in a dynamic market," Tourism Management, Elsevier, vol. 33(2), pages 317-326.
  16. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
  17. Chia-Nan Wang & Tsang-Ta Tsai & Hsien-Pin Hsu & Le-Hoang Nguyen, 2019. "Performance Evaluation of Major Asian Airline Companies Using DEA Window Model and Grey Theory," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
  18. Kenneth Button, 1997. "Lessons from European Transport Experience," The ANNALS of the American Academy of Political and Social Science, , vol. 553(1), pages 157-167, September.
  19. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
  20. Zou, Bo & Elke, Matthew & Hansen, Mark & Kafle, Nabin, 2014. "Evaluating air carrier fuel efficiency in the US airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 306-330.
  21. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
  22. Benita Maldonado, Francisco J. & Gaytán Alfaro, Edgar D. & Rodallegas Portillo, Mayra C., 2012. "Un estudio no paramétrico de eficiencia para la minería de Zacatecas, México || A Non-Parametric Approach to Efficiency for Mining in Zacatecas, Mexico," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 14(1), pages 54-75, December.
  23. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
  24. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
  25. Liu, Wei & Gao, Lixiang & Song, Hang & Huang, Mingdong, 2021. "Factor market distortion, technology change, and green growth in the Chinese civil airline industry," Journal of Asian Economics, Elsevier, vol. 77(C).
  26. Hong, Seock-Jin & Kim, Woongyi & Niranjan, Suman, 2023. "Challenges to the air cargo business of combination carriers: Analysis of two major Korean Airlines," Journal of Air Transport Management, Elsevier, vol. 108(C).
  27. Yu, Ming-Miin & Chen, Li-Hsueh, 2023. "Productivity change of airlines: A global total factor productivity index with network structure," Journal of Air Transport Management, Elsevier, vol. 109(C).
  28. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
  29. Michaelides, Panayotis G. & Belegri-Roboli, Athena & Marinos, Theocharis, 2008. "Technical Efficiency in International Air Transport," MPRA Paper 74490, University Library of Munich, Germany.
  30. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
  31. Cui, Qiang & Li, Ye, 2018. "Airline dynamic efficiency measures with a Dynamic RAM with unified natural & managerial disposability," Energy Economics, Elsevier, vol. 75(C), pages 534-546.
  32. Cui, Qiang, 2021. "A data-based comparison of the five undesirable output disposability approaches in airline environmental efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.