IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i8p3315-3322.html
   My bibliography  Save this item

Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zheng, Huanyu & Song, Malin & Shen, Zhiyang, 2021. "The evolution of renewable energy and its impact on carbon reduction in China," Energy, Elsevier, vol. 237(C).
  2. Antanasijević, Davor & Pocajt, Viktor & Ristić, Mirjana & Perić-Grujić, Aleksandra, 2015. "Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks," Energy, Elsevier, vol. 84(C), pages 816-824.
  3. Hongwei Xiao & Zhongyu Ma & Peng Zhang & Ming Liu, 2019. "Study of the impact of energy consumption structure on carbon emission intensity in China from the perspective of spatial effects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1365-1380, December.
  4. Inglesi-Lotz, Roula, 2018. "Decomposing the South African CO2 emissions within a BRICS countries context: Signalling potential energy rebound effects," Energy, Elsevier, vol. 147(C), pages 648-654.
  5. Linhe Chen & Yanhong Hang & Quanfeng Li, 2023. "Spatial-Temporal Characteristics and Influencing Factors of Carbon Emissions from Land Use and Land Cover in Black Soil Region of Northeast China Based on LMDI Simulation," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
  6. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
  7. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
  8. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
  9. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
  10. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
  11. Gui, Shusen & Wu, Chunyou & Qu, Ying & Guo, Lingling, 2017. "Path analysis of factors impacting China's CO2 emission intensity: Viewpoint on energy," Energy Policy, Elsevier, vol. 109(C), pages 650-658.
  12. Yousaf Ali & Maurizio Ciaschini & Claudio Socci & Rosita Pretaroli & Muhammad Sabir, 2019. "Identifying the sources of structural changes in CO2 emissions in Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 509-526, July.
  13. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
  14. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
  15. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
  16. Yousaf Ali & Rosita Pretaroli & Muhammad Sabir & Claudio Socci & Francesca Severini, 2020. "Structural changes in carbon dioxide (CO2) emissions in the United Kingdom (UK): an emission multiplier product matrix (EMPM) approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1545-1564, December.
  17. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
  18. Kumbaroğlu, Gürkan, 2011. "A sectoral decomposition analysis of Turkish CO2 emissions over 1990–2007," Energy, Elsevier, vol. 36(5), pages 2419-2433.
  19. Roula Inglesi-Lotz, 2017. "Decomposing the South African CO2 Emissions within a BRICS Countries Context the Energy Rebound Hypothesis," Working Papers 201751, University of Pretoria, Department of Economics.
  20. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
  21. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
  22. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
  23. Pardo Martínez, Clara Inés, 2013. "An analysis of eco-efficiency in energy use and CO2 emissions in the Swedish service industries," Socio-Economic Planning Sciences, Elsevier, vol. 47(2), pages 120-130.
  24. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
  25. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
  26. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
  27. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
  28. Jianchang Lu & Weiguo Fan & Ming Meng, 2015. "Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors," Energies, MDPI, vol. 8(4), pages 1-25, April.
  29. Fengjian Ge & Jiangfeng Li & Yi Zhang & Shipeng Ye & Peng Han, 2022. "Impacts of Energy Structure on Carbon Emissions in China, 1997–2019," IJERPH, MDPI, vol. 19(10), pages 1-25, May.
  30. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
  31. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
  32. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
  33. Su, Meirong & Pauleit, Stephan & Yin, Xuemei & Zheng, Ying & Chen, Shaoqing & Xu, Chao, 2016. "Greenhouse gas emission accounting for EU member states from 1991 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 759-768.
  34. Robaina-Alves, Margarita & Moutinho, Victor, 2014. "Decomposition of energy-related GHG emissions in agriculture over 1995–2008 for European countries," Applied Energy, Elsevier, vol. 114(C), pages 949-957.
  35. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  36. Yanan Chen & Sheng Lin, 2015. "Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1893-1909, April.
  37. Uduak Akpan & Ovunda Green & Subhes Bhattacharyya & Salisu Isihak, 2015. "Effect of Technology Change on $$\hbox {CO}_{2}$$ CO 2 Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 165-189, June.
  38. Zhenjun Gao & Shujie Li & Xiufeng Cao & Yuefen Li, 2022. "Carbon Emission Intensity Characteristics and Spatial Spillover Effects in Counties in Northeast China: Based on a Spatial Econometric Model," Land, MDPI, vol. 11(5), pages 1-19, May.
  39. Liu Chen & Xin Li & Sheng Xue & Lingfei Qu & Minxi Wang, 2019. "Carbon intensity and emission reduction potential in China: spatial measuring method," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-12, December.
  40. Chang, Chun-Ping & Dong, Minyi & Sui, Bo & Chu, Yin, 2019. "Driving forces of global carbon emissions: From time- and spatial-dynamic perspectives," Economic Modelling, Elsevier, vol. 77(C), pages 70-80.
  41. Haiming Yan & Xin Guo & Shuqin Zhao & Huicai Yang, 2022. "Variation of Net Carbon Emissions from Land Use Change in the Beijing-Tianjin-Hebei Region during 1990–2020," Land, MDPI, vol. 11(7), pages 1-15, June.
  42. Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).
  43. Lee, Chi-Chuan & Zhang, Jian & Hou, Shanshuai, 2023. "The impact of regional renewable energy development on environmental sustainability in China," Resources Policy, Elsevier, vol. 80(C).
  44. Perry Sadorsky, 2020. "Energy Related CO 2 Emissions before and after the Financial Crisis," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
  45. Juan Wang & Tao Zhao & Xianshuo Xu & Xiaohu Zhang, 2016. "Exploring the changes of energy-related carbon intensity in China: an extended Divisia index decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 501-521, August.
  46. Suwin Sandu & Muyi Yang & Teuku Meurah Indra Mahlia & Wongkot Wongsapai & Hwai Chyuan Ong & Nandy Putra & S. M. Ashrafur Rahman, 2019. "Energy-Related CO 2 Emissions Growth in ASEAN Countries: Trends, Drivers and Policy Implications," Energies, MDPI, vol. 12(24), pages 1-15, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.