IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p3093-3117d48401.html
   My bibliography  Save this article

Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors

Author

Listed:
  • Jianchang Lu

    (Department of Economics and Management, North China Electric Power University, Baoding 071003, Hebei, China)

  • Weiguo Fan

    (Department of Economics and Management, North China Electric Power University, Baoding 071003, Hebei, China)

  • Ming Meng

    (Department of Economics and Management, North China Electric Power University, Baoding 071003, Hebei, China)

Abstract

Based on the international community’s analysis of the present CO 2 emissions situation, a Log Mean Divisia Index (LMDI) decomposition model is proposed in this paper, aiming to reflect the decomposition of carbon productivity. The model is designed by analyzing the factors that affect carbon productivity. China’s contribution to carbon productivity is analyzed from the dimensions of influencing factors, regional structure and industrial structure. It comes to the conclusions that: (a) economic output, the provincial carbon productivity and energy structure are the most influential factors, which are consistent with China’s current actual policy; (b) the distribution patterns of economic output, carbon productivity and energy structure in different regions have nothing to do with the Chinese traditional sense of the regional economic development patterns; (c) considering the regional protectionism, regional actual situation need to be considered at the same time; (d) in the study of the industrial structure, the contribution value of industry is the most prominent factor for China’s carbon productivity, while the industrial restructuring has not been done well enough.

Suggested Citation

  • Jianchang Lu & Weiguo Fan & Ming Meng, 2015. "Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors," Energies, MDPI, vol. 8(4), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:3093-3117:d:48401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/3093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/3093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    2. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    3. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
    4. Holzmann, Angela & Adensam, Heidelinde & Kratena, Kurt & Schmid, Erwin, 2013. "Decomposing final energy use for heating in the residential sector in Austria," Energy Policy, Elsevier, vol. 62(C), pages 607-616.
    5. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    6. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei, 2013. "The impacts of carbon tax on energy intensity and economic growth – A dynamic evolution analysis on the case of China," Applied Energy, Elsevier, vol. 110(C), pages 17-28.
    7. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    8. Stigson, Peter & Dotzauer, Erik & Yan, Jinyue, 2009. "Improving policy making through government-industry policy learning: The case of a novel Swedish policy framework," Applied Energy, Elsevier, vol. 86(4), pages 399-406, April.
    9. Paul Armknecht & Mick Silver, 2014. "Post-Laspeyres: The Case for a New Formula for Compiling Consumer Price Indexes," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 225-244, June.
    10. Bhattacharyya, Subhes C. & Matsumura, Wataru, 2010. "Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis," Energy, Elsevier, vol. 35(8), pages 3315-3322.
    11. Ming Zhang & Qing Xia & Wenwen Wang & Min Zhou, 2014. "Study on temporal and spatial evolution of China’s oil supply and consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 809-825, June.
    12. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    13. Vaissière, Anne-Charlotte & Levrel, Harold & Pioch, Sylvain & Carlier, Antoine, 2014. "Biodiversity offsets for offshore wind farm projects: The current situation in Europe," Marine Policy, Elsevier, vol. 48(C), pages 172-183.
    14. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    15. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    16. Davidsdottir, B. & Fisher, M., 2011. "The odd couple: The relationship between state economic performance and carbon emissions economic intensity," Energy Policy, Elsevier, vol. 39(8), pages 4551-4562, August.
    17. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    18. Stern, David I. & Jotzo, Frank, 2010. "How ambitious are China and India's emissions intensity targets?," Energy Policy, Elsevier, vol. 38(11), pages 6776-6783, November.
    19. He, Jiankun & Deng, Jing & Su, Mingshan, 2010. "CO2 emission from China's energy sector and strategy for its control," Energy, Elsevier, vol. 35(11), pages 4494-4498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Liang & Dongxiao Niu & Haichao Wang & Hanyu Chen, 2017. "Assessment Analysis and Forecasting for Security Early Warning of Energy Consumption Carbon Emissions in Hebei Province, China," Energies, MDPI, vol. 10(3), pages 1-23, March.
    2. Lingming Chen & Congjia Huo, 2021. "Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
    3. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
    4. Wei Sun & Hua Cai & Yuwei Wang, 2018. "Refined Laspeyres Decomposition-Based Analysis of Relationship between Economy and Electric Carbon Productivity from the Provincial Perspective—Development Mode and Policy," Energies, MDPI, vol. 11(12), pages 1-20, December.
    5. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    6. Min Lu & Xing Wang & Yuquan Cang, 2018. "Carbon Productivity: Findings from Industry Case Studies in Beijing," Energies, MDPI, vol. 11(10), pages 1-19, October.
    7. Elena Cigu & Mihai-Bogdan Petrișor & Alina-Cristina Nuță & Florian-Marcel Nuță & Ionel Bostan, 2020. "The Nexus between Financial Regulation and Green Sustainable Economy," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    8. Miaomiao Niu & Xianchun Tan & Jianxin Guo & Guohao Li & Chen Huang, 2021. "Driving Factors and Growth Potential of Provincial Carbon Productivity in China," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    9. Weiguo Fan & Zhicheng Gao & Nan Chen & Hejie Wei & Zihan Xu & Nachuan Lu & Xuechao Wang & Peng Zhang & Jiahui Ren & Sergio Ulgiati & Xiaobin Dong, 2018. "It is Worth Pondering Whether a Carbon Tax is Suitable for China’s Agricultural-Related Sectors," Energies, MDPI, vol. 11(9), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    2. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    3. Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    4. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "A Relational Analysis Model of the Causal Factors Influencing CO 2 in Thailand’s Industrial Sector under a Sustainability Policy Adapting the VARIMAX-ECM Model," Energies, MDPI, vol. 11(7), pages 1-16, July.
    5. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    6. Timma, Lelde & Zoss, Toms & Blumberga, Dagnija, 2016. "Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia," Applied Energy, Elsevier, vol. 162(C), pages 1586-1592.
    7. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
    8. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    9. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    10. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    11. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    12. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
    13. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    14. Wenwen Li & Wenping Wang & Yu Wang & Yingbo Qin, 2017. "Industrial structure, technological progress and CO2 emissions in China: Analysis based on the STIRPAT framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1545-1564, September.
    15. Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    16. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    17. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    18. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    19. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    20. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:3093-3117:d:48401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.