IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v32y2007i9p1560-1592.html
   My bibliography  Save this item

Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
  2. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
  3. Liu, Gengyuan & Hao, Yan & Dong, Liang & Yang, Zhifeng & Zhang, Yan & Ulgiati, Sergio, 2017. "An emergy-LCA analysis of municipal solid waste management," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 131-143.
  4. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
  5. Shweta Singh & Bhavik R. Bakshi, 2014. "Accounting for Emissions and Sinks from the Biogeochemical Cycle of Carbon in the U.S. Economic Input-Output Model," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 818-828, December.
  6. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
  7. Hussain Ali Bekhet & Tahira Yasmin, 2014. "Assessment of the global financial crisis effects on energy consumption and economic growth in Malaysia: An input–output analysis," International Economics, CEPII research center, issue 140, pages 49-70.
  8. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
  9. Liang, Sai & Zhang, Tianzhu & Wang, Yafei & Jia, Xiaoping, 2012. "Sustainable urban materials management for air pollutants mitigation based on urban physical input–output model," Energy, Elsevier, vol. 42(1), pages 387-392.
  10. Jadhao, Sachin B. & Pandit, Aniruddha B. & Bakshi, Bhavik R., 2017. "The evolving metabolism of a developing economy: India’s exergy flows over four decades," Applied Energy, Elsevier, vol. 206(C), pages 851-857.
  11. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
  12. Maryam Ghodrat & Bijan Samali & Muhammad Akbar Rhamdhani & Geoffrey Brooks, 2019. "Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process," Energies, MDPI, vol. 12(7), pages 1-20, April.
  13. Cho, Cheol-Joo, 2017. "The displacement and attraction effects in interurban migration: An application of the input-output scheme to the case of large cities in Korea," Economics Discussion Papers 2017-49, Kiel Institute for the World Economy (IfW Kiel).
  14. Tatari, Omer & Nazzal, Munir & Kucukvar, Murat, 2012. "Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 18-24.
  15. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
  16. Nasseri, Iman & Assané, Djeto & Konan, Denise Eby, 2015. "While visitors conserve, residents splurge: Patterns and changes in energy consumption, 1997-2007," Energy Economics, Elsevier, vol. 49(C), pages 282-292.
  17. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2014. "Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts," Ecological Modelling, Elsevier, vol. 271(C), pages 90-102.
  18. Martin N. Nwodo & Chimay J. Anumba, 2020. "Exergetic Life Cycle Assessment: A Review," Energies, MDPI, vol. 13(11), pages 1-19, May.
  19. Fengjiao Ma & A. Egrinya Eneji & Yanbin Wu, 2018. "An Evaluation of Input–Output Value for Sustainability in a Chinese Steel Production System Based on Emergy Analysis," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
  20. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
  21. Lukas Kriechbaum & Thomas Kienberger, 2020. "Optimal Municipal Energy System Design and Operation Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(1), pages 1-28, January.
  22. Choi, Jun-Ki & Friley, Paul & Alfstad, Thomas, 2012. "Implications of energy policy on a product system's dynamic life-cycle environmental impact: Survey and model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4744-4752.
  23. Zhuang, Mufan & Gao, Ziyan & Geng, Yong & Xiao, Shijiang, 2022. "Spatial distribution pattern of embodied natural resources use in China and its relationship with socioeconomic development: From an exergetic perspective," Resources Policy, Elsevier, vol. 79(C).
  24. Torío, H. & Schmidt, D., 2010. "Framework for analysis of solar energy systems in the built environment from an exergy perspective," Renewable Energy, Elsevier, vol. 35(12), pages 2689-2697.
  25. Rocco, Matteo V. & Di Lucchio, Alberto & Colombo, Emanuela, 2017. "Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach," Applied Energy, Elsevier, vol. 194(C), pages 832-844.
  26. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Lixiao, 2013. "Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis," Ecological Modelling, Elsevier, vol. 252(C), pages 280-287.
  27. Cho, Cheol-Joo, 2013. "An exploration of reliable methods of estimating emergy requirements at the regional scale: Traditional emergy analysis, regional thermodynamic input–output analysis, or the conservation rule-implicit," Ecological Modelling, Elsevier, vol. 251(C), pages 288-296.
  28. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
  29. Campbell, Elliott T. & Tilley, David R., 2014. "The eco-price: How environmental emergy equates to currency," Ecosystem Services, Elsevier, vol. 7(C), pages 128-140.
  30. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
  31. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
  32. Gengyuan Liu & Zhifeng Yang & Bin Chen & Yan Zhang & Meirong Su & Lixiao Zhang, 2013. "Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China," Energies, MDPI, vol. 6(10), pages 1-21, October.
  33. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
  34. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
  35. Qingsong Wang & Hongkun Xiao & Qiao Ma & Xueliang Yuan & Jian Zuo & Jian Zhang & Shuguang Wang & Mansen Wang, 2020. "Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
  36. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
  37. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
  38. Yang, Qing & Liu, Gengyuan & Casazza, Marco & Campbell, Elliot T. & Giannetti, Biagio F. & Brown, Mark T., 2018. "Development of a new framework for non-monetary accounting on ecosystem services valuation," Ecosystem Services, Elsevier, vol. 34(PA), pages 37-54.
  39. Chen, Qiuwen & Ma, Xiaohan & Hu, Jiayu & Zhang, Xiaohong, 2023. "Comparison of comprehensive performance of kiwifruit production in China, Iran, and Italy based on emergy and carbon emissions," Ecological Modelling, Elsevier, vol. 483(C).
  40. Hudson, Amy & Tilley, David R., 2014. "Assessment of uncertainty in emergy evaluations using Monte Carlo simulations," Ecological Modelling, Elsevier, vol. 271(C), pages 52-61.
  41. Kucukvar, Murat & Tatari, Omer, 2011. "A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy," Energy, Elsevier, vol. 36(11), pages 6352-6357.
  42. Proskuryakova, L. & Kovalev, A., 2015. "Measuring energy efficiency: Is energy intensity a good evidence base?," Applied Energy, Elsevier, vol. 138(C), pages 450-459.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.