IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i1p367-d304473.html
   My bibliography  Save this article

Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective

Author

Listed:
  • Qingsong Wang

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, Research Center for Sustainable Development, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Hongkun Xiao

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, Research Center for Sustainable Development, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Qiao Ma

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, Research Center for Sustainable Development, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Xueliang Yuan

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, Research Center for Sustainable Development, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Jian Zuo

    (School of Architecture & Built Environment, The University of Adelaide, Adelaide, SA 5005, Australia)

  • Jian Zhang

    (School of Environmental Science and Engineering, Shandong University, 27 Shanda Road, Jinan 250100, China)

  • Shuguang Wang

    (School of Environmental Science and Engineering, Shandong University, 27 Shanda Road, Jinan 250100, China)

  • Mansen Wang

    (Medical Data Research Center, Providence Health & Services, 9205 SW Barnes Road, Portland, OR 97225, USA)

Abstract

Two methods of natural ecosystem assessment—emergy analysis (EMA) and life cycle assessment (LCA)—are reviewed in this paper. Their advantages, disadvantages, and application areas are summarized, and the similarities and differences between these two evaluation methods are analyzed respectively. Their research progress is also sorted out. The study finds that EMA and LCA share common attributes in evaluation processes and research fields, but they focus on different aspects of macrocosms and microcosms. The assessment of system sustainability is valued by both EMA and LCA, but the former has unique advantages in natural system input analysis, and the latter is more convincing in assessing environmental loading capacity. If the system boundaries of the two methods are expanded, in other words, factors such as ecosystem services, labor, and infrastructure construction are integrated into the upstream of the target system, and environmental impact is further analyzed using LCA in the downstream of the system, the two approaches would complete each other. The quantified results would be more objective. Therefore, these two theories have the necessity of coupling development. After reviewing recent coupling application cases, the results show that LCA and EMA have commonality in the upstream of the target system (mainly in inventory database construction), while the environmental impact assessment methods are different in the downstream. So the overall coupling analysis method is not formed. The current paper gives rational suggestions on the coupling development of the two systems in terms of the aggregate emergy flow table, the indicator system construction and indicator evaluation methods. In addition, it is necessary to introduce sensitivity analysis and uncertainty analysis in order to improve the reliability of assessment results. At present, the research on the coupling development of the two theories is in rapid development stage, but there are still many problems that need further exploration.

Suggested Citation

  • Qingsong Wang & Hongkun Xiao & Qiao Ma & Xueliang Yuan & Jian Zuo & Jian Zhang & Shuguang Wang & Mansen Wang, 2020. "Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:367-:d:304473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    2. Raugei, Marco & Rugani, Benedetto & Benetto, Enrico & Ingwersen, Wesley W., 2014. "Integrating emergy into LCA: Potential added value and lingering obstacles," Ecological Modelling, Elsevier, vol. 271(C), pages 4-9.
    3. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    4. Wesley W. Ingwersen, 2011. "Emergy as a Life Cycle Impact Assessment Indicator," Journal of Industrial Ecology, Yale University, vol. 15(4), pages 550-567, August.
    5. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    6. Duan, N. & Liu, X.D. & Dai, J. & Lin, C. & Xia, X.H. & Gao, R.Y. & Wang, Y. & Chen, S.Q. & Yang, J. & Qi, J., 2011. "Evaluating the environmental impacts of an urban wetland park based on emergy accounting and life cycle assessment: A case study in Beijing," Ecological Modelling, Elsevier, vol. 222(2), pages 351-359.
    7. Kursun, Berrin & Bakshi, Bhavik R. & Mahata, Manoj & Martin, Jay F., 2015. "Life cycle and emergy based design of energy systems in developing countries: Centralized and localized options," Ecological Modelling, Elsevier, vol. 305(C), pages 40-53.
    8. Ingwersen, Wesley W., 2010. "Uncertainty characterization for emergy values," Ecological Modelling, Elsevier, vol. 221(3), pages 445-452.
    9. Frida Røyne & Roman Hackl & Emma Ringström & Johanna Berlin, 2018. "Environmental Evaluation of Industry Cluster Strategies with a Life Cycle Perspective: Replacing Fossil Feedstock with Forest‐Based Feedstock and Increasing Thermal Energy Integration," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 694-705, August.
    10. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    11. Pelletier, Nathan & Pirog, Rich & Rasmussen, Rebecca, 2010. "Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(6), pages 380-389, July.
    12. Buonocore, Elvira & Vanoli, Laura & Carotenuto, Alberto & Ulgiati, Sergio, 2015. "Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy," Energy, Elsevier, vol. 86(C), pages 476-487.
    13. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    14. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    15. Cho, Cheol-Joo, 2013. "An exploration of reliable methods of estimating emergy requirements at the regional scale: Traditional emergy analysis, regional thermodynamic input–output analysis, or the conservation rule-implicit," Ecological Modelling, Elsevier, vol. 251(C), pages 288-296.
    16. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    17. Keena, Naomi & Raugei, Marco & Aly Etman, Mohamed & Ruan, Daniel & Dyson, Anna, 2018. "Clark’s Crow: A design plugin to support emergy analysis decision making towards sustainable urban ecologies," Ecological Modelling, Elsevier, vol. 367(C), pages 42-57.
    18. Alberto Navajas & Leire Uriarte & Luis M. Gandía, 2017. "Application of Eco-Design and Life Cycle Assessment Standards for Environmental Impact Reduction of an Industrial Product," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    19. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    20. Sciubba, Enrico, 2010. "On the Second-Law inconsistency of Emergy Analysis," Energy, Elsevier, vol. 35(9), pages 3696-3706.
    21. Ting Chang & Degang Yang & Jinwei Huo & Fuqiang Xia & Zhiping Zhang, 2018. "Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    22. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    23. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    24. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    25. Saladini, Fabrizio & Gopalakrishnan, Varsha & Bastianoni, Simone & Bakshi, Bhavik R., 2018. "Synergies between industry and nature – An emergy evaluation of a biodiesel production system integrated with ecological systems," Ecosystem Services, Elsevier, vol. 30(PB), pages 257-266.
    26. Ju, L.P. & Chen, B., 2011. "Embodied energy and emergy evaluation of a typical biodiesel production chain in China," Ecological Modelling, Elsevier, vol. 222(14), pages 2385-2392.
    27. Simone Maranghi & Maria Laura Parisi & Riccardo Basosi & Adalgisa Sinicropi, 2019. "Environmental Profile of the Manufacturing Process of Perovskite Photovoltaics: Harmonization of Life Cycle Assessment Studies," Energies, MDPI, vol. 12(19), pages 1-19, September.
    28. Gala, Alba Bala & Raugei, Marco & Ripa, Maddalena & Ulgiati, Sergio, 2015. "Dealing with waste products and flows in life cycle assessment and emergy accounting: Methodological overview and synergies," Ecological Modelling, Elsevier, vol. 315(C), pages 69-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Carolina V. Nadalini & Ricardo de Araujo Kalid & Ednildo Andrade Torres, 2021. "Emergy as a Tool to Evaluate Ecosystem Services: A Systematic Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    2. Lu, Hongfang & Lin, Bin-Le & Campbell, Daniel E. & Wang, Yanjia & Duan, Wenqi & Han, Taotao & Wang, Jun & Ren, Hai, 2022. "Australia-Japan telecoupling of wind power-based green ammonia for passenger transportation: Efficiency, impacts, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Benedetto Rugani & Philippe Osset & Olivier Blanc & Enrico Benetto, 2023. "Environmental Footprint Neutrality Using Methods and Tools for Natural Capital Accounting in Life Cycle Assessment," Land, MDPI, vol. 12(6), pages 1-30, June.
    4. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Yanfeng & Raugei, Marco & Zhang, Xiaohong & Mellino, Salvatore & Ulgiati, Sergio, 2021. "Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and Life Cycle Assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
    3. Keena, Naomi & Raugei, Marco & Aly Etman, Mohamed & Ruan, Daniel & Dyson, Anna, 2018. "Clark’s Crow: A design plugin to support emergy analysis decision making towards sustainable urban ecologies," Ecological Modelling, Elsevier, vol. 367(C), pages 42-57.
    4. Raugei, Marco & Rugani, Benedetto & Benetto, Enrico & Ingwersen, Wesley W., 2014. "Integrating emergy into LCA: Potential added value and lingering obstacles," Ecological Modelling, Elsevier, vol. 271(C), pages 4-9.
    5. Gala, Alba Bala & Raugei, Marco & Ripa, Maddalena & Ulgiati, Sergio, 2015. "Dealing with waste products and flows in life cycle assessment and emergy accounting: Methodological overview and synergies," Ecological Modelling, Elsevier, vol. 315(C), pages 69-76.
    6. Maione, A. & Massarotti, N. & Santagata, R. & Ulgiati, S. & Vanoli, L., 2023. "Integrated environmental accounting of a geothermal grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    9. Gustavo Bustamante & Biagio Fernando Giannetti & Feni Agostinho & Gengyuan Liu & Cecília M. V. B. Almeida, 2022. "Prioritizing Cleaner Production Actions towards Circularity: Combining LCA and Emergy in the PET Production Chain," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    10. Iribarren, Diego & Vázquez-Rowe, Ian & Rugani, Benedetto & Benetto, Enrico, 2014. "On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy," Energy, Elsevier, vol. 67(C), pages 527-537.
    11. Chen, Wei & Liu, Wenjing & Geng, Yong & Brown, Mark T. & Gao, Cuixia & Wu, Rui, 2017. "Recent progress on emergy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1051-1060.
    12. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    13. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
    14. Oliveira, Mariana & Cocozza, Annalisa & Zucaro, Amalia & Santagata, Remo & Ulgiati, Sergio, 2021. "Circular economy in the agro-industry: Integrated environmental assessment of dairy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Miguel Angel Avalos-Rangel & Daniel E. Campbell & Delfino Reyes-López & Rolando Rueda-Luna & Ricardo Munguía-Pérez & Manuel Huerta-Lara, 2021. "The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    16. Liu, Gengyuan & Hao, Yan & Dong, Liang & Yang, Zhifeng & Zhang, Yan & Ulgiati, Sergio, 2017. "An emergy-LCA analysis of municipal solid waste management," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 131-143.
    17. Lu, Hongfang & Lin, Bin-Le & Campbell, Daniel E. & Wang, Yanjia & Duan, Wenqi & Han, Taotao & Wang, Jun & Ren, Hai, 2022. "Australia-Japan telecoupling of wind power-based green ammonia for passenger transportation: Efficiency, impacts, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    19. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    20. Paolo Vassallo & Claudia Turcato & Ilaria Rigo & Claudia Scopesi & Andrea Costa & Matteo Barcella & Giulia Dapueto & Mauro Mariotti & Chiara Paoli, 2021. "Biophysical Accounting of Forests’ Value under Different Management Regimes: Conservation vs. Exploitation," Sustainability, MDPI, vol. 13(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:367-:d:304473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.