IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v25y2000i7p609-638.html
   My bibliography  Save this item

The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
  2. Ku-Hsieh Chen & Jen-Chi Cheng & Joe-Ming Lee & Liou-Yuan Li & Sheng-Yu Peng, 2020. "Energy Efficiency: Indicator, Estimation, and a New Idea," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
  3. Graus, Wina & Worrell, Ernst, 2008. "The principal-agent problem and transport energy use: Case study of company lease cars in the Netherlands," Energy Policy, Elsevier, vol. 36(10), pages 3745-3753, October.
  4. Farla, Jacco C. M. & Blok, Kornelis, 2001. "The quality of energy intensity indicators for international comparison in the iron and steel industry," Energy Policy, Elsevier, vol. 29(7), pages 523-543, June.
  5. Isabel Azevedo & Vítor Leal, 2020. "Factors That Contribute to Changes in Local or Municipal GHG Emissions: A Framework Derived from a Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-47, June.
  6. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
  7. Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
  8. Ramirez, C.A. & Blok, K. & Neelis, M. & Patel, M., 2006. "Adding apples and oranges: The monitoring of energy efficiency in the Dutch food industry," Energy Policy, Elsevier, vol. 34(14), pages 1720-1735, September.
  9. Neelis, Maarten & Ramirez-Ramirez, Andrea & Patel, Martin & Farla, Jacco & Boonekamp, Piet & Blok, Kornelis, 2007. "Energy efficiency developments in the Dutch energy-intensive manufacturing industry, 1980-2003," Energy Policy, Elsevier, vol. 35(12), pages 6112-6131, December.
  10. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
  11. Groenenberg, Heleen & Blok, Kornelis & van der Sluijs, Jeroen, 2005. "Projection of energy-intensive material production for bottom-up scenario building," Ecological Economics, Elsevier, vol. 53(1), pages 75-99, April.
  12. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
  13. Ringel, Marc & Schlomann, Barbara & Krail, Michael & Rohde, Clemens, 2016. "Towards a green economy in Germany? The role of energy efficiency policies," Applied Energy, Elsevier, vol. 179(C), pages 1293-1303.
  14. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
  15. Cullen, Jonathan M. & Allwood, Julian M., 2010. "The efficient use of energy: Tracing the global flow of energy from fuel to service," Energy Policy, Elsevier, vol. 38(1), pages 75-81, January.
  16. Neelis, M.L. & Pouwelse, J.W., 2008. "Towards consistent and reliable Dutch and international energy statistics for the chemical industry," Energy Policy, Elsevier, vol. 36(7), pages 2719-2733, July.
  17. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
  18. Beisheim, Benedikt & Krämer, Stefan & Engell, Sebastian, 2020. "Hierarchical aggregation of energy performance indicators in continuous production processes," Applied Energy, Elsevier, vol. 264(C).
  19. Schenk, Niels J. & Moll, Henri C., 2007. "The use of physical indicators for industrial energy demand scenarios," Ecological Economics, Elsevier, vol. 63(2-3), pages 521-535, August.
  20. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries," Energy, Elsevier, vol. 31(12), pages 2047-2063.
  21. Schlomann, Barbara & Reuter, Matthias & Lapillonne, Bruno & Pollier, Karine & Rosenow, Jan, 2014. "Monitoring of the "Energiewende": Energy efficiency indicators for Germany," Working Papers "Sustainability and Innovation" S10/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
  22. Saygin, D. & Worrell, E. & Tam, C. & Trudeau, N. & Gielen, D.J. & Weiss, M. & Patel, M.K., 2012. "Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry," Energy, Elsevier, vol. 44(1), pages 1094-1106.
  23. Ali Faridzad & Mahta Ghafarian Ghadim, 2023. "CO2 intensity decomposition analysis in the Netherlands' manufacturing industry: an application of monetary and physical indicators," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8799-8817, August.
  24. Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
  25. Ang, B.W., 2006. "Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index," Energy Policy, Elsevier, vol. 34(5), pages 574-582, March.
  26. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
  27. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
  28. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
  29. Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.
  30. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.