IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i12p2047-2063.html
   My bibliography  Save this article

How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries

Author

Listed:
  • Ramírez, C.A.
  • Patel, M.
  • Blok, K.

Abstract

In this paper, we have used energy and physical production data to develop energy efficiency indicators for the meat industry of four European countries for the last 15 years. Our results show a significant increase in the energy use per tonne of product in all countries (between 14% and 48%). In order to understand the drivers behind the trends, factors such as the share of frozen products, the share of cut-up products and increasing food hygiene measures are analysed. We find that strong hygiene regulations can explain between one and two-thirds of the increase while the role of increasing shares of frozen and cut fresh meat it is found to be of no significance.

Suggested Citation

  • Ramírez, C.A. & Patel, M. & Blok, K., 2006. "How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries," Energy, Elsevier, vol. 31(12), pages 2047-2063.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:12:p:2047-2063
    DOI: 10.1016/j.energy.2005.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205001738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freeman, Scott L. & Niefer, Mark J. & Roop, Joseph M., 1997. "Measuring industrial energy intensity: practical issues and problems," Energy Policy, Elsevier, vol. 25(7-9), pages 703-714.
    2. Farla, Jacco C.M & Blok, Kornelis, 2000. "The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995," Energy, Elsevier, vol. 25(7), pages 609-638.
    3. Hyman, Barry & Reed, Tracy, 1995. "Energy intensity of manufacturing processes," Energy, Elsevier, vol. 20(7), pages 593-606.
    4. Lynn Price & Laurie Michaelis & Ernst Worrell & Marta Khrushch, 1998. "Sectoral Trends and Driving Forces of Global Energy Use and Greenhouse Gas Emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 263-319, December.
    5. Nanduri, Mallika & Nyboer, John & Jaccard, Mark, 2002. "Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector," Energy Policy, Elsevier, vol. 30(2), pages 151-163, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    3. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "Energy consumption and GDP revisited: A panel analysis of developed and developing countries," Energy Economics, Elsevier, vol. 29(6), pages 1206-1223, November.
    4. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    5. Fathi, Fatemeh & Bakhshoodeh, Mohammad, 2021. "Economic and environmental strategies against targeting energy subsidy in Iranian meat market: A game theory approach," Energy Policy, Elsevier, vol. 150(C).
    6. Heidari, M.D. & Omid, M. & Akram, A., 2011. "Energy efficiency and econometric analysis of broiler production farms," Energy, Elsevier, vol. 36(11), pages 6536-6541.
    7. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    8. Daniel Anthony Howard & Bo Nørregaard Jørgensen & Zheng Ma, 2023. "Multi-Method Simulation and Multi-Objective Optimization for Energy-Flexibility-Potential Assessment of Food-Production Process Cooling," Energies, MDPI, vol. 16(3), pages 1-27, February.
    9. Tan, Reginald B.H. & Wijaya, David & Khoo, Hsien H., 2010. "LCI (Life cycle inventory) analysis of fuels and electricity generation in Singapore," Energy, Elsevier, vol. 35(12), pages 4910-4916.
    10. Nunes, J. & Silva, Pedro D. & Andrade, L.P. & Gaspar, Pedro D., 2016. "Key points on the energy sustainable development of the food industry – Case study of the Portuguese sausages industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 393-411.
    11. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    12. Confidence Duku & Carlos Alho & Rik Leemans & Annemarie Groot, 2022. "IFAD Research Series 72: Climate change and food system activities - a review of emission trends, climate impacts and the effects of dietary change," IFAD Research Series 320722, International Fund for Agricultural Development (IFAD).
    13. Giacomo Falchetta & Nicolò Golinucci & Matteo Vincenzo Rocco, 2021. "Environmental and Energy Implications of Meat Consumption Pathways in Sub-Saharan Africa," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
    14. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    15. Hauke F. Deeken & Alexandra Lengling & Manuel S. Krommweh & Wolfgang Büscher, 2023. "Improvement of Piglet Rearing’s Energy Efficiency and Sustainability Using Air-to-Air Heat Exchangers—A Two-Year Case Study," Energies, MDPI, vol. 16(4), pages 1-30, February.
    16. Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Escrivá-Escrivá, Guillermo & Domijan, Alexander, 2012. "Evaluation and assessment of demand response potential applied to the meat industry," Applied Energy, Elsevier, vol. 92(C), pages 84-91.
    17. Özilgen, Mustafa & Sorgüven, Esra, 2011. "Energy and exergy utilization, and carbon dioxide emission in vegetable oil production," Energy, Elsevier, vol. 36(10), pages 5954-5967.
    18. Mohamed Haddouche & Adrian Ilinca, 2022. "Energy Efficiency and Industry 4.0 in Wood Industry: A Review and Comparison to Other Industries," Energies, MDPI, vol. 15(7), pages 1-25, March.
    19. Ong, Benjamin H.Y. & Bhadbhade, Navdeep & Olsen, Donald G. & Wellig, Beat, 2023. "Characterizing sector-wide thermal energy profiles for industrial sectors," Energy, Elsevier, vol. 282(C).
    20. Henri de Groot & Peter Mulder, 2011. "Energy-intensity developments for 19 OECD countries and 51 sectors," CPB Discussion Paper 171, CPB Netherlands Bureau for Economic Policy Analysis.
    21. Ware, Aidan & Power, Niamh, 2016. "Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland," Renewable Energy, Elsevier, vol. 97(C), pages 541-549.
    22. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.
    23. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
    2. Ramirez, C.A. & Blok, K. & Neelis, M. & Patel, M., 2006. "Adding apples and oranges: The monitoring of energy efficiency in the Dutch food industry," Energy Policy, Elsevier, vol. 34(14), pages 1720-1735, September.
    3. Ang, B.W., 2006. "Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index," Energy Policy, Elsevier, vol. 34(5), pages 574-582, March.
    4. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    5. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
    6. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    7. Bernard, Jean-Thomas & Idoudi, Nadhem, 2003. "Demande d’énergie et changement de l’intensité énergétique du secteur manufacturier québécois de 1990 à 1998," L'Actualité Economique, Société Canadienne de Science Economique, vol. 79(4), pages 503-521, Décembre.
    8. Andrea Ramírez & Martin K. Patel & Kornelis Blok, 2011. "Using Physical Indicators to Monitor Energy Efficiency in Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 4, Edward Elgar Publishing.
    9. Farla, Jacco C. M. & Blok, Kornelis, 2001. "The quality of energy intensity indicators for international comparison in the iron and steel industry," Energy Policy, Elsevier, vol. 29(7), pages 523-543, June.
    10. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    11. Yeonbae Kim & Ernst Worrell, 2002. "CO 2 Emission Trends in the Cement Industry: An International Comparison," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(2), pages 115-133, June.
    12. Neelis, Maarten & Ramirez-Ramirez, Andrea & Patel, Martin & Farla, Jacco & Boonekamp, Piet & Blok, Kornelis, 2007. "Energy efficiency developments in the Dutch energy-intensive manufacturing industry, 1980-2003," Energy Policy, Elsevier, vol. 35(12), pages 6112-6131, December.
    13. Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
    14. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    15. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    16. Subrahmanya, M.H. Bala, 2006. "Energy intensity and economic performance in small scale bricks and foundry clusters in India: does energy intensity matter?," Energy Policy, Elsevier, vol. 34(4), pages 489-497, March.
    17. Filipović, Sanja & Verbič, Miroslav & Radovanović, Mirjana, 2015. "Determinants of energy intensity in the European Union: A panel data analysis," Energy, Elsevier, vol. 92(P3), pages 547-555.
    18. Schlomann, Barbara & Reuter, Matthias & Lapillonne, Bruno & Pollier, Karine & Rosenow, Jan, 2014. "Monitoring of the "Energiewende": Energy efficiency indicators for Germany," Working Papers "Sustainability and Innovation" S10/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    19. Verbič, Miroslav & Filipović, Sanja & Radovanović, Mirjana, 2017. "Electricity prices and energy intensity in Europe," Utilities Policy, Elsevier, vol. 47(C), pages 58-68.
    20. Andrade Silva, Fabiano Ionta & Guerra, Sinclair Mallet Guy, 2009. "Analysis of the energy intensity evolution in the Brazilian industrial sector--1995 to 2005," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2589-2596, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:12:p:2047-2063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.