IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v46y2012icp234-245.html
   My bibliography  Save this article

Analysis and decomposition of the energy intensity of California industries

Author

Listed:
  • Hasanbeigi, Ali
  • de la Rue du Can, Stephane
  • Sathaye, Jayant

Abstract

In 2008, the gross domestic product (GDP) of California industry was larger than GDP of industry in any other U.S. states. This study analyses the energy use of and output from seventeen industry subsectors in California and performs decomposition analysis to assess the influence of different factors on California industry energy use. The logarithmic mean Divisia index method is used for the decomposition analysis. The decomposition analysis results show that the observed reduction of energy use in California industry since 2000 is the result of two main factors: the intensity effect and the structural effect. The intensity effect has started pushing final energy use downward in 2000 and has since amplified. The second large effect is the structural effect. The significant decrease of the energy-intensive “Oil and Gas Extraction” subsector's share of total industry value added, from 15% in 1997 to 5% in 2008, and the increase of the non-energy intensive “Electric and electronic equipment manufacturing” sector's share of value added, from 7% in 1997 to 30% in 2008, both contributed to a decrease in the energy intensity in the industry sector.

Suggested Citation

  • Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
  • Handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:234-245
    DOI: 10.1016/j.enpol.2012.03.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512002613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.03.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jollands, Nigel & Lermit, Jonathan & Patterson, Murray, 2004. "Aggregate eco-efficiency indices for New Zealand – a Principal Components Analysis," 2004 Conference, June 25-26, 2004, Blenheim, New Zealand 97773, New Zealand Agricultural and Resource Economics Society.
    2. Ang, B.W., 2006. "Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index," Energy Policy, Elsevier, vol. 34(5), pages 574-582, March.
    3. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    4. Liu, F. L. & Ang, B. W., 2003. "Eight methods for decomposing the aggregate energy-intensity of industry," Applied Energy, Elsevier, vol. 76(1-3), pages 15-23, September.
    5. Ramirez, C.A. & Blok, K. & Neelis, M. & Patel, M., 2006. "Adding apples and oranges: The monitoring of energy efficiency in the Dutch food industry," Energy Policy, Elsevier, vol. 34(14), pages 1720-1735, September.
    6. Patterson, M.G., 1993. "An accounting framework for decomposing the energy-to-GDP ratio into its structural components of change," Energy, Elsevier, vol. 18(7), pages 741-761.
    7. Worrell, Ernst & Price, Lynn & Martin, Nathan & Farla, Jacco & Schaeffer, Roberto, 1997. "Energy intensity in the iron and steel industry: a comparison of physical and economic indicators," Energy Policy, Elsevier, vol. 25(7-9), pages 727-744.
    8. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    9. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    10. Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
    11. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    12. Farla, Jacco C.M & Blok, Kornelis, 2000. "The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995," Energy, Elsevier, vol. 25(7), pages 609-638.
    13. Bhattacharyya, Subhes C. & Ussanarassamee, Arjaree, 2005. "Changes in energy intensities of Thai industry between 1981 and 2000: a decomposition analysis," Energy Policy, Elsevier, vol. 33(8), pages 995-1002, May.
    14. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    15. Nanduri, Mallika & Nyboer, John & Jaccard, Mark, 2002. "Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector," Energy Policy, Elsevier, vol. 30(2), pages 151-163, January.
    16. Ussanarassamee, Arjaree & Bhattacharyya, Subhes C., 2005. "Changes in energy demand in Thai industry between 1981 and 2000," Energy, Elsevier, vol. 30(10), pages 1845-1857.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Liu & Shanshan Wang & Ke Wang & Ruiqin Zhang & Xiaoyan Tang, 2016. "LMDI decomposition analysis of industry carbon emissions in Henan Province, China: comparison between different 5-year plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 997-1014, January.
    2. Chen, B. & Li, J.S. & Zhou, S.L. & Yang, Q. & Chen, G.Q., 2018. "GHG emissions embodied in Macao's internal energy consumption and external trade: Driving forces via decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4100-4106.
    3. Changjian Wang & Fei Wang & Gengzhi Huang & Yang Wang & Xinlin Zhang & Yuyao Ye & Xiaojie Lin & Zhongwu Zhang, 2021. "Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    4. Jimenez, Raul & Mercado, Jorge, 2014. "Energy intensity: A decomposition and counterfactual exercise for Latin American countries," Energy Economics, Elsevier, vol. 42(C), pages 161-171.
    5. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    6. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    7. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    8. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    9. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
    10. Lei Liu & Shanshan Wang & Ke Wang & Ruiqin Zhang & Xiaoyan Tang, 2016. "LMDI decomposition analysis of industry carbon emissions in Henan Province, China: comparison between different 5-year plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 997-1014, January.
    11. Shu Yang & Dingtao Zhao & Yanrui Wu & Jin Fan, 2013. "Regional Variation in Carbon Emissions and its Driving Forces in China: An Index Decomposition Analysis," Energy & Environment, , vol. 24(7-8), pages 1249-1270, December.
    12. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    13. Hasanbeigi, Ali & Price, Lynn & Fino-Chen, Cecilia & Lu, Hongyou & Ke, Jing, 2013. "Retrospective and prospective decomposition analysis of Chinese manufacturing energy use and policy implications," Energy Policy, Elsevier, vol. 63(C), pages 562-574.
    14. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    15. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    2. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    3. Hasanbeigi, Ali & Price, Lynn & Fino-Chen, Cecilia & Lu, Hongyou & Ke, Jing, 2013. "Retrospective and prospective decomposition analysis of Chinese manufacturing energy use and policy implications," Energy Policy, Elsevier, vol. 63(C), pages 562-574.
    4. Yu-Kai Huang & Jyh-Yih Hsu & Lih-Chyun Sun, 2017. "A Study of Energy Efficiency and Mitigation of Carbon Emission: Implication of Decomposing Energy Intensity of Manufacturing Sector in Taiwan," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 26-33.
    5. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    6. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
    7. Jimenez, Raul & Mercado, Jorge, 2014. "Energy intensity: A decomposition and counterfactual exercise for Latin American countries," Energy Economics, Elsevier, vol. 42(C), pages 161-171.
    8. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    9. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
    10. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    11. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    12. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    13. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    14. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    15. Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
    16. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    17. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    18. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    19. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    20. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:234-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.