IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v25y2000i12p1245-1256.html
   My bibliography  Save this item

An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
  2. Oktay, Z. & Coskun, C. & Dincer, I., 2011. "A new approach for predicting cooling degree-hours and energy requirements in buildings," Energy, Elsevier, vol. 36(8), pages 4855-4863.
  3. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
  4. Liu, Long & Zhao, Jing & Liu, Xin & Wang, Zhaoxia, 2014. "Energy consumption comparison analysis of high energy efficiency office buildings in typical climate zones of China and U.S. based on correction model," Energy, Elsevier, vol. 65(C), pages 221-232.
  5. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
  6. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
  7. Coskun, C., 2010. "A novel approach to degree-hour calculation: Indoor and outdoor reference temperature based degree-hour calculation," Energy, Elsevier, vol. 35(6), pages 2455-2460.
  8. Kenisarin, Murat & Kenisarina, Kamola, 2007. "Energy saving potential in the residential sector of Uzbekistan," Energy, Elsevier, vol. 32(8), pages 1319-1325.
  9. Verbai, Zoltán & Lakatos, Ákos & Kalmár, Ferenc, 2014. "Prediction of energy demand for heating of residential buildings using variable degree day," Energy, Elsevier, vol. 76(C), pages 780-787.
  10. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
  11. Kuru Merve & Calis Gulben, 2020. "Application of time series models for heating degree day forecasting," Organization, Technology and Management in Construction, Sciendo, vol. 12(1), pages 2137-2146, January.
  12. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
  13. Szoplik, Jolanta, 2016. "Improving the natural gas transporting based on the steady state simulation results," Energy, Elsevier, vol. 109(C), pages 105-116.
  14. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
  15. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2015. "The Impact of Local Microclimate Boundary Conditions on Building Energy Performance," Sustainability, MDPI, vol. 7(7), pages 1-24, July.
  16. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
  17. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
  18. Seyed Amin Tabatabaei & Wim Van der Ham & Michel C. A. Klein & Jan Treur, 2017. "A Data Analysis Technique to Estimate the Thermal Characteristics of a House," Energies, MDPI, vol. 10(9), pages 1-19, September.
  19. Mehleri, E.D. & Sarimveis, H. & Markatos, N.C. & Papageorgiou, L.G., 2013. "Optimal design and operation of distributed energy systems: Application to Greek residential sector," Renewable Energy, Elsevier, vol. 51(C), pages 331-342.
  20. Zhang, L.Y. & Jin, L.W. & Wang, Z.N. & Zhang, J.Y. & Liu, X. & Zhang, L.H., 2017. "Effects of wall configuration on building energy performance subject to different climatic zones of China," Applied Energy, Elsevier, vol. 185(P2), pages 1565-1573.
  21. Özyurt, Ömer & Bakirci, Kadir & Erdoğan, Sadık & Yilmaz, Mehmet, 2009. "Bin weather data for the provinces of the Eastern Anatolia in Turkey," Renewable Energy, Elsevier, vol. 34(5), pages 1319-1332.
  22. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
  23. Kharseh, Mohamad & Altorkmany, Lobna & Nordell, Bo, 2011. "Global warming’s impact on the performance of GSHP," Renewable Energy, Elsevier, vol. 36(5), pages 1485-1491.
  24. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
  25. Forouzanfar, Mehdi & Doustmohammadi, Ali & Menhaj, M. Bagher & Hasanzadeh, Samira, 2010. "Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran," Applied Energy, Elsevier, vol. 87(1), pages 268-274, January.
  26. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
  27. Sarak, H & Satman, A, 2003. "The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study," Energy, Elsevier, vol. 28(9), pages 929-939.
  28. Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
  29. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
  30. Sergio Rech & Stefano Casarin & Carlos Santos Silva & Andrea Lazzaretto, 2020. "University Campus and Surrounding Residential Complexes as Energy-Hub: A MILP Optimization Approach for a Smart Exchange of Solar Energy," Energies, MDPI, vol. 13(11), pages 1-22, June.
  31. Khuram Pervez Amber & Muhammad Waqar Aslam & Faraz Ikram & Anila Kousar & Hafiz Muhammad Ali & Naveed Akram & Kamran Afzal & Haroon Mushtaq, 2018. "Heating and Cooling Degree-Days Maps of Pakistan," Energies, MDPI, vol. 11(1), pages 1-12, January.
  32. Ergun Yukseltan & Ahmet Yucekaya & Ayse Humeyra Bilge & Esra Agca Aktunc, 2020. "Forecasting Models for Daily Natural Gas Consumption Considering Periodic Variations and Demand Segregation," Papers 2003.13385, arXiv.org.
  33. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
  34. Kharseh, Mohamad & Altorkmany, Lobna, 2012. "How global warming and building envelope will change buildings energy use in central Europe," Applied Energy, Elsevier, vol. 97(C), pages 999-1004.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.