IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p94-d125128.html
   My bibliography  Save this article

Heating and Cooling Degree-Days Maps of Pakistan

Author

Listed:
  • Khuram Pervez Amber

    (Department of Mechanical Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250 (AJK), Pakistan)

  • Muhammad Waqar Aslam

    (Department of Computer System Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250 (AJK), Pakistan)

  • Faraz Ikram

    (Department of Mechanical Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250 (AJK), Pakistan)

  • Anila Kousar

    (Department of Electrical (Power) Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250 (AJK), Pakistan)

  • Hafiz Muhammad Ali

    (Department of Mechanical Engineering, University of Engineering and Technology (UET), Taxila 47080, Pakistan)

  • Naveed Akram

    (Department of Mechanical Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250 (AJK), Pakistan)

  • Kamran Afzal

    (Department of Mechanical Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250 (AJK), Pakistan)

  • Haroon Mushtaq

    (Department of Mechanical Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250 (AJK), Pakistan)

Abstract

The building sector consumes about 40% of the world’s primary energy. Seasonal climatic conditions have a significant effect on the energy consumption in buildings. One of the famous methods used for decoding this seasonal variation in buildings energy consumption is the “Degree Days Method”. Data has been widely published for the heating and cooling degree days of different countries. Unfortunately, there is very limited and outdated published data for the heating and cooling degree-days of Pakistan. In this study, yearly average heating and cooling degree-days for different regions of Pakistan are established by using 30 year long-term measured data for different base temperatures. The data is presented in tables and figures whereas heating and cooling degree-day maps of Pakistan have been developed.

Suggested Citation

  • Khuram Pervez Amber & Muhammad Waqar Aslam & Faraz Ikram & Anila Kousar & Hafiz Muhammad Ali & Naveed Akram & Kamran Afzal & Haroon Mushtaq, 2018. "Heating and Cooling Degree-Days Maps of Pakistan," Energies, MDPI, vol. 11(1), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:94-:d:125128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/94/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gelegenis, John J., 2009. "A simplified quadratic expression for the approximate estimation of heating degree-days to any base temperature," Applied Energy, Elsevier, vol. 86(10), pages 1986-1994, October.
    2. Büyükalaca, Orhan & Bulut, Hüsamettin & YIlmaz, Tuncay, 2001. "Analysis of variable-base heating and cooling degree-days for Turkey," Applied Energy, Elsevier, vol. 69(4), pages 269-283, August.
    3. Şen, Zekai & Kadiogl̂u, Mikdat, 1998. "Heating degree–days for arid regions," Energy, Elsevier, vol. 23(12), pages 1089-1094.
    4. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    5. Oktay, Z. & Coskun, C. & Dincer, I., 2011. "A new approach for predicting cooling degree-hours and energy requirements in buildings," Energy, Elsevier, vol. 36(8), pages 4855-4863.
    6. Al-Hadhrami, L.M., 2013. "Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 305-314.
    7. Fikru, Mahelet G. & Gautier, Luis, 2015. "The impact of weather variation on energy consumption in residential houses," Applied Energy, Elsevier, vol. 144(C), pages 19-30.
    8. Durmayaz, Ahmet & Kadıoǧlu, Mikdat & Şen, Zekai, 2000. "An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul," Energy, Elsevier, vol. 25(12), pages 1245-1256.
    9. Verbai, Zoltán & Lakatos, Ákos & Kalmár, Ferenc, 2014. "Prediction of energy demand for heating of residential buildings using variable degree day," Energy, Elsevier, vol. 76(C), pages 780-787.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waqas Ahmed Mahar & Griet Verbeeck & Sigrid Reiter & Shady Attia, 2020. "Sensitivity Analysis of Passive Design Strategies for Residential Buildings in Cold Semi-Arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    2. Omarov, Bekarys & Memon, Shazim Ali & Kim, Jong, 2023. "A novel approach to develop climate classification based on degree days and building energy performance," Energy, Elsevier, vol. 267(C).
    3. Sajid Abrar & Hooman Farzaneh, 2021. "Scenario Analysis of the Low Emission Energy System in Pakistan Using Integrated Energy Demand-Supply Modeling Approach," Energies, MDPI, vol. 14(11), pages 1-30, June.
    4. Abu Reza Md. Towfiqul Islam & Itmam Ahmed & Md. Siddiqur Rahman, 2020. "Trends in cooling and heating degree-days overtimes in Bangladesh? An investigation of the possible causes of changes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 879-909, April.
    5. Khuram Pervez Amber & Antony R. Day & Naeem Iqbal Ratyal & Rizwan Ahmad & Muhammad Amar, 2018. "The Significance of a Building’s Energy Consumption Profiles for the Optimum Sizing of a Combined Heat and Power (CHP) System—A Case Study for a Student Residence Hall," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    6. Habib Ur Rehman & Sajjad Ali Haider & Syed Rameez Naqvi & Muhammad Naeem & Kyung-Sup Kwak & S. M. Riazul Islam, 2022. "Environment Friendly Energy Cooperation in Neighboring Buildings: A Transformed Linearization Approach," Energies, MDPI, vol. 15(3), pages 1-15, February.
    7. Rashiqa Abdul Salam & Khuram Pervez Amber & Naeem Iqbal Ratyal & Mehboob Alam & Naveed Akram & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2020. "An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector," Energies, MDPI, vol. 13(21), pages 1-37, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    2. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    3. Kenisarin, Murat & Kenisarina, Kamola, 2007. "Energy saving potential in the residential sector of Uzbekistan," Energy, Elsevier, vol. 32(8), pages 1319-1325.
    4. Verbai, Zoltán & Lakatos, Ákos & Kalmár, Ferenc, 2014. "Prediction of energy demand for heating of residential buildings using variable degree day," Energy, Elsevier, vol. 76(C), pages 780-787.
    5. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    6. Zhang, L.Y. & Jin, L.W. & Wang, Z.N. & Zhang, J.Y. & Liu, X. & Zhang, L.H., 2017. "Effects of wall configuration on building energy performance subject to different climatic zones of China," Applied Energy, Elsevier, vol. 185(P2), pages 1565-1573.
    7. Zhang, Yue-Jun & Peng, Hua-Rong, 2017. "Exploring the direct rebound effect of residential electricity consumption: An empirical study in China," Applied Energy, Elsevier, vol. 196(C), pages 132-141.
    8. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    9. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
    10. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2015. "The Impact of Local Microclimate Boundary Conditions on Building Energy Performance," Sustainability, MDPI, vol. 7(7), pages 1-24, July.
    11. Özyurt, Ömer & Bakirci, Kadir & Erdoğan, Sadık & Yilmaz, Mehmet, 2009. "Bin weather data for the provinces of the Eastern Anatolia in Turkey," Renewable Energy, Elsevier, vol. 34(5), pages 1319-1332.
    12. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    13. Al-Hadhrami, L.M., 2013. "Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 305-314.
    14. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
    15. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    16. Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
    17. Sukjoon Oh & John F. Gardner, 2022. "Large Scale Energy Signature Analysis: Tools for Utility Managers and Planners," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    18. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    19. Maqbool, Rashid, 2018. "Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective," Energy, Elsevier, vol. 158(C), pages 944-956.
    20. Al-Shammari, Eiman Tamah & Keivani, Afram & Shamshirband, Shahaboddin & Mostafaeipour, Ali & Yee, Por Lip & Petković, Dalibor & Ch, Sudheer, 2016. "Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm," Energy, Elsevier, vol. 95(C), pages 266-273.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:94-:d:125128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.