IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v107y2016icp205-214.html
   My bibliography  Save this article

Developing the energy profile of mountainous areas

Author

Listed:
  • Papada, Lefkothea
  • Kaliampakos, Dimitris

Abstract

The quantification of the increase of energy needs with altitude is undertaken in this paper, in an attempt to highlight the greater vulnerability of mountainous areas to energy poverty. Three different cases have been studied, namely, Austria, Switzerland and north Italy, by applying the method of degree days. The results show that in mountainous areas of little but not insignificant latitudinal variation, such as a country level or a large region within a country which is the usual scale in terms of energy policy, heating and cooling degree days can be predicted based only on altitude, with over 90% accuracy. For this reason, mathematical models – as simple functions of altitude – are suggested, estimating heating and cooling energy demand in a simple and reliable way. As an example, a typical residence at 1200 m in Switzerland has 2 times higher thermal energy needs and a longer heating period by 5 months, compared to the altitude of 200 m. Therefore, mountainous societies are more exposed to energy poverty compared to lowlands and energy policy measures (e.g. subsidies, taxes of fuel prices) should be adapted to their special needs.

Suggested Citation

  • Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
  • Handle: RePEc:eee:energy:v:107:y:2016:i:c:p:205-214
    DOI: 10.1016/j.energy.2016.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630408X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gelegenis, John J., 2009. "A simplified quadratic expression for the approximate estimation of heating degree-days to any base temperature," Applied Energy, Elsevier, vol. 86(10), pages 1986-1994, October.
    2. Cai, Jing & Jiang, Zhigang, 2008. "Changing of energy consumption patterns from rural households to urban households in China: An example from Shaanxi Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1667-1680, August.
    3. Büyükalaca, Orhan & Bulut, Hüsamettin & YIlmaz, Tuncay, 2001. "Analysis of variable-base heating and cooling degree-days for Turkey," Applied Energy, Elsevier, vol. 69(4), pages 269-283, August.
    4. Katsoulakos, Nikolas M. & Kaliampakos, Dimitris C., 2016. "Mountainous areas and decentralized energy planning: Insights from Greece," Energy Policy, Elsevier, vol. 91(C), pages 174-188.
    5. Katsoulakos, Nikolas M. & Kaliampakos, Dimitris C., 2014. "What is the impact of altitude on energy demand? A step towards developing specialized energy policy for mountainous areas," Energy Policy, Elsevier, vol. 71(C), pages 130-138.
    6. Verbai, Zoltán & Lakatos, Ákos & Kalmár, Ferenc, 2014. "Prediction of energy demand for heating of residential buildings using variable degree day," Energy, Elsevier, vol. 76(C), pages 780-787.
    7. Xu, X.Y. & Ang, B.W., 2014. "Analysing residential energy consumption using index decomposition analysis," Applied Energy, Elsevier, vol. 113(C), pages 342-351.
    8. Ahmed, Mumtaz & Riaz, Khalid & Maqbool Khan, Atif & Bibi, Salma, 2015. "Energy consumption–economic growth nexus for Pakistan: Taming the untamed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 890-896.
    9. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Energy supply and use in a rural West African village," Energy, Elsevier, vol. 43(1), pages 283-292.
    10. De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
    11. Khuman, Y.S.C. & Pandey, Ranjita & Rao, K.S., 2011. "Fuelwood consumption patterns in Fakot watershed, Garhwal Himalaya, Uttarakhand," Energy, Elsevier, vol. 36(8), pages 4769-4776.
    12. Pachauri, S. & Mueller, A. & Kemmler, A. & Spreng, D., 2004. "On Measuring Energy Poverty in Indian Households," World Development, Elsevier, vol. 32(12), pages 2083-2104, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Luting & Long, Enshen & Wei, Jincheng & Cheng, Zhu & Zheng, Hanjie, 2021. "A new approach to determine the optimum tilt angle and orientation of solar collectors in mountainous areas with high altitude," Energy, Elsevier, vol. 237(C).
    2. Huaquan Zhang & Yashuang Tang & Martinson Ankrah Twumasi & Abbas Ali Chandio & Lili Guo & Ruixin Wan & Shilei Pan & Yun Shen & Ghulam Raza Sargani, 2022. "The Effects of Ecological Public Welfare Jobs on the Usage of Clean Energy by Farmers: Evidence from Tibet Areas—China," Agriculture, MDPI, vol. 12(7), pages 1-16, June.
    3. Papada, Lefkothea & Kaliampakos, Dimitris, 2018. "A Stochastic Model for energy poverty analysis," Energy Policy, Elsevier, vol. 116(C), pages 153-164.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    2. Katsoulakos, Nikolas M. & Kaliampakos, Dimitris C., 2014. "What is the impact of altitude on energy demand? A step towards developing specialized energy policy for mountainous areas," Energy Policy, Elsevier, vol. 71(C), pages 130-138.
    3. Khuram Pervez Amber & Muhammad Waqar Aslam & Faraz Ikram & Anila Kousar & Hafiz Muhammad Ali & Naveed Akram & Kamran Afzal & Haroon Mushtaq, 2018. "Heating and Cooling Degree-Days Maps of Pakistan," Energies, MDPI, vol. 11(1), pages 1-12, January.
    4. Papada, Lefkothea & Kaliampakos, Dimitris, 2018. "A Stochastic Model for energy poverty analysis," Energy Policy, Elsevier, vol. 116(C), pages 153-164.
    5. Al-Hadhrami, L.M., 2013. "Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 305-314.
    6. San, Vibol & Spoann, Vin & Ly, Dalin & Chheng, Ngov Veng, 2012. "Fuelwood consumption patterns in Chumriey Mountain, Kampong Chhnang Province, Cambodia," Energy, Elsevier, vol. 44(1), pages 335-346.
    7. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    8. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    9. Küçüktopcu, Erdem & Cemek, Bilal, 2018. "A study on environmental impact of insulation thickness of poultry building walls," Energy, Elsevier, vol. 150(C), pages 583-590.
    10. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Factors affecting fuelwood consumption in household cookstoves in an isolated rural West African village," Energy, Elsevier, vol. 46(1), pages 310-321.
    11. Ciulla, Giuseppina & Lo Brano, Valerio & D’Amico, Antonino, 2016. "Modelling relationship among energy demand, climate and office building features: A cluster analysis at European level," Applied Energy, Elsevier, vol. 183(C), pages 1021-1034.
    12. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    13. Tyralis, Hristos & Karakatsanis, Georgios & Tzouka, Katerina & Mamassis, Nikos, 2017. "Exploratory data analysis of the electrical energy demand in the time domain in Greece," Energy, Elsevier, vol. 134(C), pages 902-918.
    14. Huang, Lizhen & Bohne, Rolf André & Lohne, Jardar, 2015. "Shelter and residential building energy consumption within the 450 ppm CO2eq constraints in different climate zones," Energy, Elsevier, vol. 90(P1), pages 965-979.
    15. Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
    16. Jiang, Dachuan & Xiao, Weihua & Wang, Jianhua & Wang, Hao & Zhao, Yong & Li, Baoqi & Zhou, Pu, 2018. "Evaluation of the effects of one cold wave on heating energy consumption in different regions of northern China," Energy, Elsevier, vol. 142(C), pages 331-338.
    17. Ana M. Marina Domingo & Javier M. Rey-Hernández & Julio F. San José Alonso & Raquel Mata Crespo & Francisco J. Rey Martínez, 2018. "Energy Efficiency Analysis Carried Out by Installing District Heating on a University Campus. A Case Study in Spain," Energies, MDPI, vol. 11(10), pages 1-20, October.
    18. Yangyi Song & Ao Du & Tong Cui, 2024. "Using the Degree-Day Method to Analyze Central Heating Energy Consumption in Cities of Northern China," Sustainability, MDPI, vol. 16(3), pages 1-14, January.
    19. María Herrando & Antonio Gómez & Norberto Fueyo, 2022. "Supporting Local Authorities to Plan Energy Efficiency in Public Buildings: From Local Needs to Regional Planning," Energies, MDPI, vol. 15(3), pages 1-17, January.
    20. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:107:y:2016:i:c:p:205-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.