IDEAS home Printed from https://ideas.repec.org/r/eee/dyncon/v34y2010i4p598-603.html
   My bibliography  Save this item

On the relation between the mean and variance of delay in dynamic queues with random capacity and demand

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Amirgholy, Mahyar & Gonzales, Eric J., 2017. "Efficient frontier of route choice for modeling the equilibrium under travel time variability with heterogeneous traveler preferences," Economics of Transportation, Elsevier, vol. 11, pages 1-14.
  2. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
  3. Kim, Jiwon & Mahmassani, Hani S., 2015. "Compound Gamma representation for modeling travel time variability in a traffic network," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 40-63.
  4. Li, Hao & Tu, Huizhao & Hensher, David A., 2016. "Integrating the mean–variance and scheduling approaches to allow for schedule delay and trip time variability under uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 151-163.
  5. Fosgerau, Mogens & Fukuda, Daisuke, 2010. "Valuing travel time variability: Characteristics of the travel time distribution on an urban road," MPRA Paper 24330, University Library of Munich, Germany.
  6. Yuyang Zhou & Minhe Zhao & Songtao Tang & William H. K. Lam & Anthony Chen & N. N. Sze & Yanyan Chen, 2020. "Assessing the Relationship between Access Travel Time Estimation and the Accessibility to High Speed Railway Station by Different Travel Modes," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
  7. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
  8. Paul Koster & Eric Pels & Erik Verhoef, 2016. "The User Costs of Air Travel Delay Variability," Transportation Science, INFORMS, vol. 50(1), pages 120-131, February.
  9. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
  10. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
  11. Fosgerau, Mogens & Lindsey, Robin, 2013. "Trip-timing decisions with traffic incidents," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 764-782.
  12. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
  13. André de Palma & Mogens Fosgerau, 2010. "Dynamic and Static congestion models: A review," Working Papers hal-00539166, HAL.
  14. Lamotte, Raphaël & de Palma, André & Geroliminis, Nikolas, 2017. "On the use of reservation-based autonomous vehicles for demand management," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 205-227.
  15. Nicholas B. Taylor & Benjamin G. Heydecker, 2015. "Estimating probability distributions of dynamic queues," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(1), pages 3-27, February.
  16. Liu, Yang & Li, Yuanyuan & Hu, Lu, 2018. "Departure time and route choices in bottleneck equilibrium under risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 774-793.
  17. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
  18. Mogens Fosgerau & Kurt Van Dender, 2013. "Road pricing with complications," Transportation, Springer, vol. 40(3), pages 479-503, May.
  19. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
  20. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
  21. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
  22. Zheng Li & Alejandro Tirachini & David A. Hensher, 2012. "Embedding Risk Attitudes in a Scheduling Model: Application to the Study of Commuting Departure Time," Transportation Science, INFORMS, vol. 46(2), pages 170-188, May.
  23. Nicolas Coulombel & André de Palma, 2014. "The marginal social cost of travel time variability," Post-Print hal-01100105, HAL.
  24. Koster, Paul & Kroes, Eric & Verhoef, Erik, 2011. "Travel time variability and airport accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1545-1559.
  25. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
  26. Kathrin Goldmann & Gernot Sieg, 2018. "Economic implications of phantom traffic jams: Evidence from traffic experiments," Working Papers 26, Institute of Transport Economics, University of Muenster.
  27. Eliasson, Jonas, 2009. "Forecasting travel time variability," MPRA Paper 92470, University Library of Munich, Germany.
  28. Liu, Qiumin & Jiang, Rui & Liu, Ronghui & Zhao, Hui & Gao, Ziyou, 2020. "Travel cost budget based user equilibrium in a bottleneck model with stochastic capacity," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 1-37.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.