IDEAS home Printed from https://ideas.repec.org/r/bla/agecon/v33y2005is3p503-511.html
   My bibliography  Save this item

The impact of weather on crop yield distribution in Taiwan: some new evidence from panel data models and implications for crop insurance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen, 2014. "An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions," IJERPH, MDPI, vol. 11(3), pages 1-19, March.
  2. Kim, Man-Keun & Pang, Arwin, 2009. "Climate Change Impact on Rice Yield and Production Risk," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 32(2), pages 1-13, June.
  3. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
  4. Spencer, Nekeisha & Polachek, Solomon, 2015. "Hurricane watch: Battening down the effects of the storm on local crop production," Ecological Economics, Elsevier, vol. 120(C), pages 234-240.
  5. Chih-Chun KUNG, 2018. "A dynamic framework of sustainable development in agriculture and bioenergy," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 445-455.
  6. Meng-Shiuh CHANG & Wen WANG & Chih-Chun KUNG, 2015. "Economic effects of the biochar application on rice supply in Taiwan," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(6), pages 284-295.
  7. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen & Xiaoyong Cao, 2014. "Environmental Impact and Energy Production: Evaluation of Biochar Application on Taiwanese Set-Aside Land," Energy & Environment, , vol. 25(1), pages 13-39, February.
  8. Saumya Verma & Shreekant Gupta & Partha Sen, 2020. "Does climate change make foodgrain yields more unpredictable? Evidence from India," Working papers 305, Centre for Development Economics, Delhi School of Economics.
  9. Xiaoyong CAO & Chih-Chun KUNG & Yuelong WANG, 2017. "An environmental and economic evaluation of carbon sequestration from pyrolysis and biochar application in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(12), pages 569-578.
  10. Barry K. Goodwin & Nicholas E. Piggott, 2020. "Has Technology Increased Agricultural Yield Risk? Evidence from the Crop Insurance Biotech Endorsement," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1578-1597, October.
  11. V. Saravanakumar, "undated". "Impact of Climate Change on Yield of Major Food Crops in Tamil Nadu, India," Working papers 91, The South Asian Network for Development and Environmental Economics.
  12. Meza-Pale, Pablo & Yunez-Naude, Antonio, 2015. "The Effect of Rainfall Variation on Agricultural Households: Evidence from Mexico," 2015 Conference, August 9-14, 2015, Milan, Italy 212457, International Association of Agricultural Economists.
  13. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  14. Meng-Shiuh Chang & Chih-Chun Kung, 2018. "The greenhouse gas impact of bioenergy in developing economies: Evidence from Taiwan," Energy & Environment, , vol. 29(3), pages 315-332, May.
  15. Kung, Chih-Chun & McCarl, Bruce A., 2020. "The potential role of renewable electricity generation in Taiwan," Energy Policy, Elsevier, vol. 138(C).
  16. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
  17. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
  18. Agabriel, Jacques & Lherm, Michel & Mosnier, Claire & Reynaud, Arnaud & Thomas, Alban, 2009. "Estimating a Production Function under Production and Output Price Risks: An Application to Beef Cattle in France," TSE Working Papers 09-046, Toulouse School of Economics (TSE).
  19. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).
  20. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
  21. Chih-Chun Kung & Meng-Shiuh Chang, 2015. "Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
  22. Mario Cunha & Christian Richter, 2016. "The impact of climate change on the winegrape vineyards of the Portuguese Douro region," Climatic Change, Springer, vol. 138(1), pages 239-251, September.
  23. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
  24. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
  25. Mario Cunha, 2010. "Modelling the Cyclical Behaviour of Wine Production in the Douro Region Using a Time-Varying Parameters Approach," Working Papers 2010.1, International Network for Economic Research - INFER.
  26. Fernandez, Mario Andres, 2013. "Decadal Climate Variability: Economic Implications In Agriculture And Water In The Missouri River Basin," 2013 Conference, August 28-30, 2013, Christchurch, New Zealand 160199, New Zealand Agricultural and Resource Economics Society.
  27. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
  28. Kung, Chih-Chun & Zhang, Ning, 2015. "Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation," Energy, Elsevier, vol. 90(P2), pages 1532-1544.
  29. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
  30. Chen, Chi-Chung & Hsu, Sheng-Ming & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2012. "Estimating the Economic Impacts of Climate Change on Global Food Market," Conference papers 332262, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  31. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
  32. Ramsey, A. Ford & Tack, Jesse B. & Balota, Maria, 2021. "Double or Nothing: Impacts of Warming on Crop Quantity, Quality, and Revenue," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(1), January.
  33. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
  34. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
  35. Jesse Tack & Keith Coble & Barry Barnett, 2018. "Warming temperatures will likely induce higher premium rates and government outlays for the U.S. crop insurance program," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 635-647, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.