IDEAS home Printed from https://ideas.repec.org/a/caa/jnlage/v64y2018i10id281-2017-agricecon.html
   My bibliography  Save this article

A dynamic framework of sustainable development in agriculture and bioenergy

Author

Listed:
  • Chih-Chun KUNG

Abstract

The use of fossil fuels raises serious environmental concerns and causes major adverse effects such as the ocean level rise and the increased occurrence of hurricanes. To alleviate such problems, a global movement towards the generation of renewable energy is considered to be an effective way to help reducing the global greenhouse gas emissions and to sustain social development. Bioenergy is one attractive renewable energy source in Taiwan because a substantial amount of cropland has been released after the participation in the World Trade Organization (WTO). This study proposes two dynamic agricultural sector models to analyse how changes in the land fertility affect agricultural activities and bioenergy development. The analytical result indicates that economic incentives such as the direct subsidy and tax credit can be used to maintain a desired fertility level. In addition, the objectives of bioenergy development must be defined in advance because changes in discount rates and planning horizons have considerable influences on the effectiveness of policies.

Suggested Citation

  • Chih-Chun KUNG, 2018. "A dynamic framework of sustainable development in agriculture and bioenergy," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 445-455.
  • Handle: RePEc:caa:jnlage:v:64:y:2018:i:10:id:281-2017-agricecon
    DOI: 10.17221/281/2017-AGRICECON
    as

    Download full text from publisher

    File URL: http://agricecon.agriculturejournals.cz/doi/10.17221/281/2017-AGRICECON.html
    Download Restriction: free of charge

    File URL: http://agricecon.agriculturejournals.cz/doi/10.17221/281/2017-AGRICECON.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/281/2017-AGRICECON?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Njakou Djomo, S. & Witters, N. & Van Dael, M. & Gabrielle, B. & Ceulemans, R., 2015. "Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies," Applied Energy, Elsevier, vol. 154(C), pages 122-130.
    2. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    3. Martins, M. Belem & Marques, Carlos, 2007. "Methodological aspects of a mathematical programming model to evaluate soil tillage technologies in a risky environment," European Journal of Operational Research, Elsevier, vol. 177(1), pages 556-571, February.
    4. Ching-Cheng Chang & Bruce A. McCarl & James W. Mjelde & James W. Richardson, 1992. "Sectoral Implications of Farm Program Modifications," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(1), pages 38-49.
    5. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    6. Keith H. Coble & Ching-Cheng Chang & Bruce A. McCarl & Bobby R. Eddleman, 1992. "Assessing Economic Implications of New Technology: The Case of Cornstarch-Based Biodegradable Plastic," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(1), pages 33-43.
    7. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    8. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    9. Dubois, Pierre, 2002. "Moral hazard, land fertility and sharecropping in a rural area of the Philippines," Journal of Development Economics, Elsevier, vol. 68(1), pages 35-64, June.
    10. Yang, Hui-Ling & Teng, Jinn-Tsair & Chern, Maw-Sheng, 2002. "A forward recursive algorithm for inventory lot-size models with power-form demand and shortages," European Journal of Operational Research, Elsevier, vol. 137(2), pages 394-400, March.
    11. Weber, Thomas A., 2011. "Optimal Control Theory with Applications in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262015730, December.
    12. Scott A. Hamilton & Bruce A. McCarl & Richard M. Adams, 1985. "The Effect of Aggregate Response Assumptions on Environmental Impact Analyses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 407-413.
    13. Ridier, Aude & Chaib, Karim & Roussy, Caroline, 2016. "A Dynamic Stochastic Programming model of crop rotation choice to test the adoption of long rotation under price and production risks," European Journal of Operational Research, Elsevier, vol. 252(1), pages 270-279.
    14. Chi‐Chung Chen & Ching‐Cheng Chang, 2005. "The impact of weather on crop yield distribution in Taiwan: some new evidence from panel data models and implications for crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 33(s3), pages 503-511, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V.T. Krishnaprasath & J Preethi, 2021. "Finite automata model for leaf disease classification," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(6), pages 220-226.
    2. Bisera Andric Gusavac & Milan Stanojevic & Mirjana Cangalovic, 2019. "Optimal treatment of agricultural land - special multi-depot vehicle routing problem," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 65(12), pages 569-578.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyong CAO & Chih-Chun KUNG & Yuelong WANG, 2017. "An environmental and economic evaluation of carbon sequestration from pyrolysis and biochar application in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(12), pages 569-578.
    2. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    3. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    4. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
    5. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen & Xiaoyong Cao, 2014. "Environmental Impact and Energy Production: Evaluation of Biochar Application on Taiwanese Set-Aside Land," Energy & Environment, , vol. 25(1), pages 13-39, February.
    6. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    7. Chih-Chun Kung & Meng-Shiuh Chang, 2015. "Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    8. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen, 2014. "An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions," IJERPH, MDPI, vol. 11(3), pages 1-19, March.
    9. Meng-Shiuh CHANG & Wen WANG & Chih-Chun KUNG, 2015. "Economic effects of the biochar application on rice supply in Taiwan," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(6), pages 284-295.
    10. Kung, Chih-Chun & Zhang, Ning, 2015. "Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation," Energy, Elsevier, vol. 90(P2), pages 1532-1544.
    11. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    12. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
    13. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    14. Ching-Cheng Chang, 1999. "Carbon sequestration cost by afforestation in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 2(3), pages 199-213, September.
    15. Schneider, Uwe A. & McCarl, Bruce A., 2005. "Implications of a Carbon-Based Energy Tax for U.S. Agriculture," Agricultural and Resource Economics Review, Cambridge University Press, vol. 34(2), pages 265-279, October.
    16. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).
    17. Callaway, J.M., 2000. "Assessing the Costs and Market Impacts of Carbon Sequestration, Climate Change and Acid Rain," Other publications TiSEM c58adec9-1535-46cf-b213-b, Tilburg University, School of Economics and Management.
    18. Meng-Shiuh Chang & Chih-Chun Kung, 2018. "The greenhouse gas impact of bioenergy in developing economies: Evidence from Taiwan," Energy & Environment, , vol. 29(3), pages 315-332, May.
    19. McCarl, Bruce A., 1992. "Mathematical Programming For Resource Policy Appraisal Under Multiple Objectives," Working Papers 11888, Environmental and Natural Resources Policy Training Project.
    20. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlage:v:64:y:2018:i:10:id:281-2017-agricecon. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.