IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v138y2015icp36-50.html
   My bibliography  Save this article

Climate effects of bioenergy from forest residues in comparison to fossil energy

Author

Listed:
  • Gustavsson, Leif
  • Haus, Sylvia
  • Ortiz, Carina A.
  • Sathre, Roger
  • Truong, Nguyen Le

Abstract

Forest residues can be left at the harvest site to gradually decompose, or can be collected for energy purposes. This study analyzes the primary energy and climate impacts of bioenergy systems where forest residues are collected and used for electricity, heat and transportation, compared to fossil-based energy systems where fossil fuels provide the same services while forest residues are left on site to decompose. Time profiles are elaborated of primary energy use and carbon dioxide emissions from various energy applications fulfilled by bioenergy or fossil energy systems. Different biological decay functions are considered based on process-based modeling and inventory data across various climate zones. For all scenarios, the changes in cumulative radiative forcing (CRF) are calculated over a 300-year period, to evaluate the short- and long-term contributions of forest residue to climate change mitigation. A life cycle perspective along the full energy chains is used to evaluate the overall effectiveness of each system. The results show largest primary energy and climate benefits when forest residues are collected and used efficiently for energy services. Using biomass to substitute fossil coal provides greater climate change mitigation benefits than substituting oil or fossil gas. Some bioenergy substitutions result in positive CRF, i.e. increased global warming, during an initial period. This occurs for relatively inefficient bioenergy conversion pathways to substitute less carbon intensive fossil fuels, e.g. biomotor fuel used to replace diesel. More beneficial bioenergy substitutions, such as efficiently replacing coal, result immediately in reduced CRF. Biomass decay rates and transportation distance have less influence on climate benefits.

Suggested Citation

  • Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
  • Handle: RePEc:eee:appene:v:138:y:2015:i:c:p:36-50
    DOI: 10.1016/j.apenergy.2014.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191401054X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jäppinen, Eero & Korpinen, Olli-Jussi & Laitila, Juha & Ranta, Tapio, 2014. "Greenhouse gas emissions of forest bioenergy supply and utilization in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 369-382.
    2. Ortiz, Carina A. & Liski, Jari & Gärdenäs, Annemieke I. & Lehtonen, Aleksi & Lundblad, Mattias & Stendahl, Johan & Ågren, Göran I. & Karltun, Erik, 2013. "Soil organic carbon stock changes in Swedish forest soils—A comparison of uncertainties and their sources through a national inventory and two simulation models," Ecological Modelling, Elsevier, vol. 251(C), pages 221-231.
    3. L. Zetterberg & S. Uppenberg & M. Åhman, 2004. "Climate impact from peat utilisation in Sweden," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(1), pages 37-76, March.
    4. Keith Burnard & Sankar Bhattacharya, 2011. "Power Generation from Coal: Ongoing Developments and Outlook," IEA Energy Papers 2011/14, OECD Publishing.
    5. Gustavsson, Leif & Eriksson, Lisa & Sathre, Roger, 2011. "Costs and CO2 benefits of recovering, refining and transporting logging residues for fossil fuel replacement," Applied Energy, Elsevier, vol. 88(1), pages 192-197, January.
    6. Gustavsson, Leif & Truong, Nguyen Le, 2011. "Coproduction of district heat and electricity or biomotor fuels," Energy, Elsevier, vol. 36(10), pages 6263-6277.
    7. Gustavsson, L. & Holmberg, J. & Dornburg, V. & Sathre, R. & Eggers, T. & Mahapatra, K. & Marland, G., 2007. "Using biomass for climate change mitigation and oil use reduction," Energy Policy, Elsevier, vol. 35(11), pages 5671-5691, November.
    8. Johanna Routa & Antti Asikainen & Rolf Björheden & Juha Laitila & Dominik Röser, 2013. "Forest energy procurement: state of the art in Finland and Sweden," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(6), pages 602-613, November.
    9. Leif Gustavsson & Åsa Karlsson, 2006. "CO 2 Mitigation: On Methods and Parameters for Comparison of Fossil-Fuel and Biofuel Systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 935-959, September.
    10. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    11. Hamelinck, Carlo N & Faaij, Andre P.C., 2006. "Outlook for advanced biofuels," Energy Policy, Elsevier, vol. 34(17), pages 3268-3283, November.
    12. Tuomi, M. & Thum, T. & Järvinen, H. & Fronzek, S. & Berg, B. & Harmon, M. & Trofymow, J.A. & Sevanto, S. & Liski, J., 2009. "Leaf litter decomposition—Estimates of global variability based on Yasso07 model," Ecological Modelling, Elsevier, vol. 220(23), pages 3362-3371.
    13. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    2. Sathre, Roger & Gustavsson, Leif & Truong, Nguyen Le, 2017. "Climate effects of electricity production fuelled by coal, forest slash and municipal solid waste with and without carbon capture," Energy, Elsevier, vol. 122(C), pages 711-723.
    3. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    4. Gustavsson, Leif & Truong, Nguyen Le, 2016. "Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration," Energy, Elsevier, vol. 115(P3), pages 1779-1789.
    5. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Cost and primary energy efficiency of small-scale district heating systems," Applied Energy, Elsevier, vol. 130(C), pages 419-427.
    6. Joelsson, Jonas M. & Gustavsson, Leif, 2012. "Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills," Energy, Elsevier, vol. 39(1), pages 363-374.
    7. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Minimum-cost district heat production systems of different sizes under different environmental and social cost scenarios," Applied Energy, Elsevier, vol. 136(C), pages 881-893.
    8. Sathre, Roger & Gustavsson, Leif, 2009. "Process-based analysis of added value in forest product industries," Forest Policy and Economics, Elsevier, vol. 11(1), pages 65-75, January.
    9. Bright, Ryan M. & H. Strømman, Anders, 2010. "Incentivizing wood-based Fischer-Tropsch diesel through financial policy instruments: An economic assessment for Norway," Energy Policy, Elsevier, vol. 38(11), pages 6849-6859, November.
    10. Kalt, Gerald & Kranzl, Lukas, 2011. "Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach," Applied Energy, Elsevier, vol. 88(11), pages 3665-3684.
    11. Nguyen, Truong & Gustavsson, Leif, 2020. "Production of district heat, electricity and/or biomotor fuels in renewable-based energy systems," Energy, Elsevier, vol. 202(C).
    12. Gustavsson, Leif & Truong, Nguyen Le, 2011. "Coproduction of district heat and electricity or biomotor fuels," Energy, Elsevier, vol. 36(10), pages 6263-6277.
    13. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2014. "Effects of heat and electricity saving measures in district-heated multistory residential buildings," Applied Energy, Elsevier, vol. 118(C), pages 57-67.
    14. Joelsson, J.M. & Gustavsson, L., 2008. "CO2 emission and oil use reduction through black liquor gasification and energy efficiency in pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 52(5), pages 747-763.
    15. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    16. Repo, Anna & Ahtikoski, Anssi & Liski, Jari, 2015. "Cost of turning forest residue bioenergy to carbon neutral," Forest Policy and Economics, Elsevier, vol. 57(C), pages 12-21.
    17. Gustavsson, L. & Nguyen, T. & Sathre, R. & Tettey, U.Y.A., 2021. "Climate effects of forestry and substitution of concrete buildings and fossil energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    18. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    19. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    20. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:138:y:2015:i:c:p:36-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.