IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip3p1779-1789.html
   My bibliography  Save this article

Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration

Author

Listed:
  • Gustavsson, Leif
  • Truong, Nguyen Le

Abstract

Different pathways and technologies can be used to convert woody biomass to transport services, but the biomass use and climate implications vary strongly between the alternatives. This study focuses on primary energy use and climate change effects of using bioenergy for transportation in the context of a renewable-based energy system. Integrated pathways to improve the energy efficiency of power and transportation sectors and integrated intermittent renewable energy are considered. The results show that the bioenergy pathway that produces biomotor fuels to replace fossil fuels leads to high primary energy use and instantaneous biogenic CO2 emission per km of driving distance, thus increasing global warming during the first 40–50 years, compared to fossil alternatives. The electric vehicle pathway using bioelectricity from combined heat and power plants leads to immediate global cooling and much greater climate benefits in the long run compared to biomotor fuels. Climate change effects of light-duty vehicles could be strongly reduced by changes in technology together with system integration that links the transport sector to the electricity and heating sectors. The use of biomass should be considered in the context of the overall integrated energy system, and in relation to the development of energy conversion technologies between different sectors.

Suggested Citation

  • Gustavsson, Leif & Truong, Nguyen Le, 2016. "Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration," Energy, Elsevier, vol. 115(P3), pages 1779-1789.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p3:p:1779-1789
    DOI: 10.1016/j.energy.2016.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216304248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    2. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    3. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    4. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    5. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    6. Densing, Martin & Turton, Hal & Bäuml, Georg, 2012. "Conditions for the successful deployment of electric vehicles – A global energy system perspective," Energy, Elsevier, vol. 47(1), pages 137-149.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    8. Basu, Prabir & Butler, James & Leon, Mathias A., 2011. "Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants," Renewable Energy, Elsevier, vol. 36(1), pages 282-288.
    9. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    10. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    11. Gustavsson, Leif & Truong, Nguyen Le, 2011. "Coproduction of district heat and electricity or biomotor fuels," Energy, Elsevier, vol. 36(10), pages 6263-6277.
    12. Johanna Routa & Antti Asikainen & Rolf Björheden & Juha Laitila & Dominik Röser, 2013. "Forest energy procurement: state of the art in Finland and Sweden," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(6), pages 602-613, November.
    13. Leif Gustavsson & Åsa Karlsson, 2006. "CO 2 Mitigation: On Methods and Parameters for Comparison of Fossil-Fuel and Biofuel Systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 935-959, September.
    14. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    15. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    16. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Truong & Gustavsson, Leif, 2020. "Production of district heat, electricity and/or biomotor fuels in renewable-based energy systems," Energy, Elsevier, vol. 202(C).
    2. Ju, Dehao & Huang, Zhong & Jia, Xiaoxu & Qiao, Xinqi & Xiao, Jin & Huang, Zhen, 2016. "Macroscopic characteristics and internal flow pattern of dimethyl ether flash-boiling spray discharged through a vertical twin-orifice injector," Energy, Elsevier, vol. 114(C), pages 1240-1250.
    3. Gustavsson, L. & Nguyen, T. & Sathre, R. & Tettey, U.Y.A., 2021. "Climate effects of forestry and substitution of concrete buildings and fossil energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Sathre, Roger & Gustavsson, Leif, 2021. "A lifecycle comparison of natural resource use and climate impact of biofuel and electric cars," Energy, Elsevier, vol. 237(C).
    5. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
    6. Krzysztof J. Wołosz & Krzysztof Urbaniec & Neven Duić, 2021. "Sustainable Development of Energy, Water and Environment Systems (SDEWES)," Sustainability, MDPI, vol. 13(9), pages 1-7, April.
    7. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland & Trømborg, Erik & Rørstad, Per Kristian, 2020. "The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector," Applied Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    2. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Cost and primary energy efficiency of small-scale district heating systems," Applied Energy, Elsevier, vol. 130(C), pages 419-427.
    3. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.
    6. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    7. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    8. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    9. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Lund, Henrik & Zhang, Xiliang, 2015. "Heat roadmap China: New heat strategy to reduce energy consumption towards 2030," Energy, Elsevier, vol. 81(C), pages 274-285.
    10. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
    11. Nguyen, Truong & Gustavsson, Leif, 2020. "Production of district heat, electricity and/or biomotor fuels in renewable-based energy systems," Energy, Elsevier, vol. 202(C).
    12. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    14. Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
    15. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
    16. Assefa Hagos, Dejene & Gebremedhin, Alemayehu & Folsland Bolkesjø, Torjus, 2015. "Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway," Energy Policy, Elsevier, vol. 85(C), pages 386-396.
    17. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    18. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    19. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p3:p:1779-1789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.