Advanced Search
MyIDEAS: Login

Forecasting business-cycle turning points with (relatively large) linear systems in real time

Contents:

Author Info

  • Schreiber, Sven

Abstract

The detection of business-cycle turning points is usually performed with non-linear discrete-regime models such as binary dependent variable (e.g., probit or logit) or Markov-switching methods. The probit model has the drawback that the continuous underlying target variable is discretized, with a considerable loss of information. The Markov-switching approach in general presupposes a non-linear data-generating process, and the numerical likelihood maximization becomes increasingly dif cult when more covariates are used. To avoid these problems we suggest to rst use standard linear systems (subset VARs with zero restrictions) to forecast the relevant underlying variable(s), and in a second step to derive the probability of a suitably de ned turning point from the forecast probability density function. This approach will never fail numerically. We also discuss and show how this approach can be used in real time in the presence of publication lags and to capture features of the data revision process, and we apply the method to German data; the event of the recent Great Recession is rst signalled in June 2008, several months before the of cial published data con rms it (but due to publication and recognition lags it is found after it already began in reality). --

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://econstor.eu/bitstream/10419/79709/1/VfS_2013_pid_559.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Verein für Socialpolitik / German Economic Association in its series Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order with number 79709.

as in new window
Length:
Date of creation: 2013
Date of revision:
Handle: RePEc:zbw:vfsc13:79709

Contact details of provider:
Email:
Web page: http://www.socialpolitik.org/
More information through EDIRC

Related research

Keywords:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bańbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Large Bayesian VARs," Working Paper Series 0966, European Central Bank.
  2. Jeremy J. Nalewaik, 2012. "Estimating Probabilities of Recession in Real Time Using GDP and GDI," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 235-253, 02.
  3. Österholm, Pär, 2012. "The limited usefulness of macroeconomic Bayesian VARs when estimating the probability of a US recession," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 76-86.
  4. Don Harding & Adrian Pagan, 2000. "Disecting the Cycle: A Methodological Investigation," Econometric Society World Congress 2000 Contributed Papers 1164, Econometric Society.
  5. James D. Hamilton, 2010. "Calling Recessions in Real Time," NBER Working Papers 16162, National Bureau of Economic Research, Inc.
  6. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  7. Daniel Detzer & Christian R. Proaño & Katja Rietzler & Sven Schreiber & Thomas Theobald & Sabine Stephan, 2012. "Verfahren der konjunkturellen Wendepunktbestimmung unter Berücksichtigung der Echtzeit-Problematik," IMK Studies 27-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
  8. Ng, Eric C.Y., 2012. "Forecasting US recessions with various risk factors and dynamic probit models," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 112-125.
  9. Layton, Allan P. & Katsuura, Masaki, 2001. "Comparison of regime switching, probit and logit models in dating and forecasting US business cycles," International Journal of Forecasting, Elsevier, vol. 17(3), pages 403-417.
  10. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc13:79709. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.