IDEAS home Printed from https://ideas.repec.org/p/uea/ueaccp/2015_11.html
   My bibliography  Save this paper

A structural break cartel screen for dating and detecting collusion

Author

Listed:
  • Carsten J. Crede

    (Centre for Competition Policy and School of Economics, University of East Anglia)

Abstract

In this paper, a new empirical screen for detecting cartels is developed. It can also be used to date the beginning of known conspiracies, which is often difficult in practice. Structural breaks that are induced by cartels in the data generating process (DGP) of industry prices are detected by testing reduced form price equations for structural instability. The new screen is applied to three European markets for pasta products, and it successfully reports the cartels that were present in the Italian and Spanish markets, but finds no suspicious patterns in the French market, which was not cartelised.

Suggested Citation

  • Carsten J. Crede, 2015. "A structural break cartel screen for dating and detecting collusion," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2015-11, Centre for Competition Policy, University of East Anglia, Norwich, UK..
  • Handle: RePEc:uea:ueaccp:2015_11
    as

    Download full text from publisher

    File URL: https://ueaeco.github.io/working-papers/papers/ccp/CCP-15-11.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Connor, 2005. "Collusion and price dispersion," Applied Economics Letters, Taylor & Francis Journals, vol. 12(6), pages 335-338.
    2. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    3. Kai Hüschelrath & Tobias Veith, 2014. "Cartel Detection in Procurement Markets," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 35(6), pages 404-422, September.
    4. Baker, Jonathan B & Rubinfeld, Daniel L, 1999. "Empirical Methods in Antitrust Litigation: Review and Critique," American Law and Economics Review, American Law and Economics Association, vol. 1(1-2), pages 386-435, Fall.
    5. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    6. Pim Heijnen & Marco A. Haan & Adriaan R. Soetevent, 2015. "Screening for collusion: a spatial statistics approach," Journal of Economic Geography, Oxford University Press, vol. 15(2), pages 417-448.
    7. Porter, Robert H & Zona, J Douglas, 1993. "Detection of Bid Rigging in Procurement Auctions," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 518-538, June.
    8. James F. Nieberding, 2006. "Estimating overcharges in antitrust cases using a reduced-form approach: Methods and issues," Journal of Applied Economics, Universidad del CEMA, vol. 9, pages 361-380, November.
    9. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    10. Giovanni Notaro, 2014. "Methods For Quantifying Antitrust Damages: The Pasta Cartel In Italy," Journal of Competition Law and Economics, Oxford University Press, vol. 10(1), pages 87-106.
    11. Blanckenburg Korbinian von & Kholodilin Konstantin A. & Geist Alexander, 2012. "The Influence of Collusion on Price Changes: New Evidence from Major Cartel Cases," German Economic Review, De Gruyter, vol. 13(3), pages 245-256, August.
    12. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    13. Rosa Abrantes-Metz & Patrick Bajari, 2010. "Screens for Conspiracies and Their Multiple Applications," CPI Journal, Competition Policy International, vol. 6.
    14. Abrantes-Metz, Rosa M. & Froeb, Luke M. & Geweke, John & Taylor, Christopher T., 2006. "A variance screen for collusion," International Journal of Industrial Organization, Elsevier, vol. 24(3), pages 467-486, May.
    15. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    16. Rosa Abrantes-Metz, 2014. "Recent Successes of Screens for Conspiracies and Manipulations: Why Are There Still Skeptics?â€," Antitrust Chronicle, Competition Policy International, vol. 10.
    17. Robert H. Porter, 1983. "A Study of Cartel Stability: The Joint Executive Committee, 1880-1886," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 301-314, Autumn.
    18. Achim Zeileis, 2004. "Alternative boundaries for CUSUM tests," Statistical Papers, Springer, vol. 45(1), pages 123-131, January.
    19. José Manuel Ordóñez-de-Haro & José Luis Torres, 2014. "Price Hysteresis After Antitrust Enforcement: Evidence From Spanish Food Markets," Journal of Competition Law and Economics, Oxford University Press, vol. 10(1), pages 217-256.
    20. Bolotova, Yuliya & Connor, John M. & Miller, Douglas J., 2008. "The impact of collusion on price behavior: Empirical results from two recent cases," International Journal of Industrial Organization, Elsevier, vol. 26(6), pages 1290-1307, November.
    21. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    22. Kramer, Walter & Ploberger, Werner & Alt, Raimund, 1988. "Testing for Structural Change in Dynamic Models," Econometrica, Econometric Society, vol. 56(6), pages 1355-1369, November.
    23. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    24. James F. Nieberding, 2006. "Estimating Overcharges in Antitrust Cases Using a Reduced-Form Approach: Methods and Issues," Journal of Applied Economics, Taylor & Francis Journals, vol. 9(2), pages 361-380, November.
    25. Achim Zeileis & Friedrich Leisch & Christian Kleiber & Kurt Hornik, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121, January.
    26. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(6), pages 835-854, December.
    27. Chu, Chia-Shang James & Hornik, Kurt & Kuan, Chung-Ming, 1995. "The Moving-Estimates Test for Parameter Stability," Econometric Theory, Cambridge University Press, vol. 11(4), pages 699-720, August.
    28. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Peter Boswijk & Maurice J. G. Bun & Maarten Pieter Schinkel, 2019. "Cartel dating," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 26-42, January.
    2. Willem H. Boshoff & Rossouw van Jaarsveld, 2019. "Recurrent Collusion: Cartel Episodes and Overcharges in the South African Cement Market," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 54(2), pages 353-380, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carsten J. Crede, 2019. "A Structural Break Cartel Screen for Dating and Detecting Collusion," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 54(3), pages 543-574, May.
    2. Achim Zeileis & Friedrich Leisch & Christian Kleiber & Kurt Hornik, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121, January.
    3. Abhijit Sharma & Kelvin G Balcombe & Iain M Fraser, 2009. "Non-renewable resource prices: Structural breaks and long term trends," Economics Bulletin, AccessEcon, vol. 29(2), pages 805-819.
    4. Achim Zeileis, 2005. "A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 445-466.
    5. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    6. Anatolyev Stanislav & Kosenok Grigory, 2018. "Sequential Testing with Uniformly Distributed Size," Journal of Time Series Econometrics, De Gruyter, vol. 10(2), pages 1-22, July.
    7. Korbinian von Blanckenburg & Marc Hanfeld & Konstantin A. Kholodilin, 2013. "A Market Screening Model for Price Inconstancies: Empirical Evidence from German Electricity Markets," Discussion Papers of DIW Berlin 1274, DIW Berlin, German Institute for Economic Research.
    8. Liu, Guanchun & He, Lei & Yue, Yiding & Wang, Jiying, 2014. "The linkage between insurance activity and banking credit: Some evidence from dynamic analysis," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 239-265.
    9. Otto, Sven & Breitung, Jörg, 2020. "Backward CUSUM for Testing and Monitoring Structural Change," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224533, Verein für Socialpolitik / German Economic Association.
    10. Liu, Guan-Chun & Lee, Chien-Chiang & Lee, Chi-Chuan, 2016. "The nexus between insurance activity and economic growth: A bootstrap rolling window approach," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 299-319.
    11. Sven Otto & Jorg Breitung, 2020. "Backward CUSUM for Testing and Monitoring Structural Change with an Application to COVID-19 Pandemic Data," Papers 2003.02682, arXiv.org, revised Mar 2022.
    12. Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.
    13. Kuan, Chung-Ming, 1998. "Tests for changes in models with a polynomial trend," Journal of Econometrics, Elsevier, vol. 84(1), pages 75-91, May.
    14. Makram El-Shagi & Sebastian Giesen, 2013. "Testing for Structural Breaks at Unknown Time: A Steeplechase," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 101-123, January.
    15. Jan J. J. Groen & George Kapetanios & Simon Price, 2013. "Multivariate Methods For Monitoring Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 250-274, March.
    16. Christis Katsouris, 2022. "Partial Sum Processes of Residual-Based and Wald-type Break-Point Statistics in Time Series Regression Models," Papers 2202.00141, arXiv.org, revised Feb 2022.
    17. Czinkota, Thomas, 2012. "Das Halteproblem bei Strukturbrüchen in Finanzmarktzeitreihen [The Halting Problem applied to Structural Breaks in Financial Time Series]," MPRA Paper 37072, University Library of Munich, Germany.
    18. Luis Fernando Melo Velandia & Martha Alicia Misas Arango, 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles," Borradores de Economia 3244, Banco de la Republica.
    19. Jan J. J. Groen & George Kapetanios & Simon Price, 2013. "Multivariate Methods For Monitoring Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 250-274, March.
    20. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2017. "The stability of short-term interest rates pass-through in the euro area during the financial market and sovereign debt crises," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 74-94.

    More about this item

    Keywords

    antitrust; cartel; detection; empirical screen;
    All these keywords.

    JEL classification:

    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • L41 - Industrial Organization - - Antitrust Issues and Policies - - - Monopolization; Horizontal Anticompetitive Practices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uea:ueaccp:2015_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juliette Hardmad (email available below). General contact details of provider: https://edirc.repec.org/data/esueauk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.