IDEAS home Printed from https://ideas.repec.org/p/ucn/wpaper/202119.html
   My bibliography  Save this paper

A Framework to Measure Regional Disparities in Battery Electric Vehicle Diffusion in Ireland

Author

Listed:
  • Sanghamitra Mukherjee

Abstract

This work studies the role of socio-economic and geospatial factors in shaping battery electric vehicle adoption for the case study of Ireland. It provides new insights on the level and timing of likely adoption at scale using a Bass diffusion model combined with a spatial model. The Bass model demonstrates that a country like Ireland may experience peak sales between 2025 and 2030 given current trends, reaching overall uptake levels that are not commensurate with current policy goals, whilst also potentially creating gulfs in regional take-up. The key conclusion from the spatial analysis is that location matters for uptake, through various channels that help or hinder adoption such as resources, information, and policy. Additional investment in public charging infrastructure facilities may also be needed as gaps in coverage exist, especially in rural areas to the West and South-West of the country. Although Ireland enjoys good network coverage overall, this study suggests that more charge points may be needed in some counties and Dublin city and suburbia where the number of charge points is currently disproportionate to a minimum network coverage comparable with the land area, population size, number of private vehicle owners, and travel behaviour. As the urgency for climate action intensifies in the coming decade, our spatio-temporal approach to studying uptake will not only help meet Ireland’s socio-ecological vision for the future, but also provide insights and strategies for comparable countries that are similarly placed in terms of electric vehicle adoption.

Suggested Citation

  • Sanghamitra Mukherjee, 2021. "A Framework to Measure Regional Disparities in Battery Electric Vehicle Diffusion in Ireland," Working Papers 202119, School of Economics, University College Dublin.
  • Handle: RePEc:ucn:wpaper:202119
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10197/12560
    File Function: First version, 2021
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Viola, 2021. "Electric Vehicles and Psychology," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    2. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    3. Mukherjee, Sanghamitra Chattopadhyay & Ryan, Lisa, 2020. "Factors influencing early battery electric vehicle adoption in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    5. Hill, Graeme & Heidrich, Oliver & Creutzig, Felix & Blythe, Phil, 2019. "The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Gergő Tóth & Johannes Wachs & Riccardo Clemente & Ákos Jakobi & Bence Ságvári & János Kertész & Balázs Lengyel, 2021. "Inequality is rising where social network segregation interacts with urban topology," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    8. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    9. Sanghamitra Mukherjee, 2020. "Boosting Renewable Energy Technology Uptake in Ireland: A Machine Learning Approach," Working Papers 202027, School of Economics, University College Dublin.
    10. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    11. Alam, Md. Saniul & Hyde, Bernard & Duffy, Paul & McNabola, Aonghus, 2017. "Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland," Applied Energy, Elsevier, vol. 189(C), pages 283-300.
    12. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    13. Canepa, Kathryn & Hardman, Scott & Tal, Gil, 2019. "An early look at plug-in electric vehicle adoption in disadvantaged communities in California," Transport Policy, Elsevier, vol. 78(C), pages 19-30.
    14. Dmitriev, Mikhail & Comin, Diego & Rossi-Hansberg, Esteban, 2012. "The Spatial Diffusion of Technology," CEPR Discussion Papers 9208, C.E.P.R. Discussion Papers.
    15. Jang, Sungha & Prasad, Ashutosh & Ratchford, Brian T., 2017. "Consumer Search of Multiple Information Sources and its Impact on Consumer Price Satisfaction," Journal of Interactive Marketing, Elsevier, vol. 40(C), pages 24-40.
    16. Melvin, Jesse, 2018. "The split incentives energy efficiency problem: Evidence of underinvestment by landlords," Energy Policy, Elsevier, vol. 115(C), pages 342-352.
    17. Jason Henderson, 2020. "EVs Are Not the Answer: A Mobility Justice Critique of Electric Vehicle Transitions," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 110(6), pages 1993-2010, November.
    18. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    19. Sanghamitra Mukherjee & Tensay Meles & L. (Lisa B.) Ryan & Séin Healy & Robert Mooney & Lindsay Sharpe & Paul Hayes, 2020. "Attitudes to Renewable Energy Technologies: Driving Change in Early Adopter Markets," Working Papers 202026, School of Economics, University College Dublin.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
    2. Liu, Xueying & Madlener, Reinhard, 2019. "Get Ready for Take-Off: A Two-Stage Model of Aircraft Market Diffusion," FCN Working Papers 15/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Arias-Gaviria, Jessica & Larsen, Erik R. & Arango-Aramburo, Santiago, 2018. "Understanding the future of Seawater Air Conditioning in the Caribbean: A simulation approach," Utilities Policy, Elsevier, vol. 53(C), pages 73-83.
    4. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Diffusion forecast for grid-tied rooftop solar photovoltaic technology under store-on grid scheme model in Sub-Saharan Africa: Government role assessment," Renewable Energy, Elsevier, vol. 180(C), pages 516-535.
    5. Collins, Matthew & Curtis, John, 2017. "Advertising and investment spillovers in the diffusion of residential energy efficiency renovations," Papers WP569, Economic and Social Research Institute (ESRI).
    6. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    7. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    9. Orsatti, Gianluca & Pezzoni, Michele & Quatraro, Francesco, 2017. "Where Do Green Technologies Come From? Inventor Teams’ Recombinant Capabilities and the Creation of New Knowledge," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201711, University of Turin.
    10. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    11. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    12. Bernd Frick & Franziska Prockl, 2018. "Information Precision In Online Communities: Player Valuations On Www.Transfermarkt.De," Working Papers Dissertations 37, Paderborn University, Faculty of Business Administration and Economics.
    13. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    14. Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2021. "BASS Model Analysis in “Crossing the Chasm” in E-Cars Innovation Diffusion Scenarios," Energies, MDPI, vol. 14(11), pages 1-16, May.
    15. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    16. Stefan N. Groesser & Niklas Jovy, 2016. "Business model analysis using computational modeling: a strategy tool for exploration and decision-making," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 27(1), pages 61-88, February.
    17. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    18. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    19. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    20. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    21. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    22. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.

    More about this item

    Keywords

    Battery electric vehicle adoption; Spatial analysis; Consumer behaviour; Bass diffusion model; Ireland;
    All these keywords.

    JEL classification:

    • D1 - Microeconomics - - Household Behavior
    • D9 - Microeconomics - - Micro-Based Behavioral Economics
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucn:wpaper:202119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicolas Clifton (email available below). General contact details of provider: https://edirc.repec.org/data/educdie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.