IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0197024.html
   My bibliography  Save this article

A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003

Author

Listed:
  • Ad van den Oord
  • Arjen van Witteloostuijn

Abstract

In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003.

Suggested Citation

  • Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
  • Handle: RePEc:plo:pone00:0197024
    DOI: 10.1371/journal.pone.0197024
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197024
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0197024&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0197024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, January.
    2. Johann Peter Murmann, 2013. "The Coevolution of Industries and Important Features of Their Environments," Organization Science, INFORMS, vol. 24(1), pages 58-78, February.
    3. Torkkeli, Marko & Tuominen, Markku, 2002. "The contribution of technology selection to core competencies," International Journal of Production Economics, Elsevier, vol. 77(3), pages 271-284, June.
    4. Roger M. Heeler & Thomas P. Hustad, 1980. "Problems in Predicting New Product Growth for Consumer Durables," Management Science, INFORMS, vol. 26(10), pages 1007-1020, October.
    5. Jackie Krafft & Francesco Quatraro & Pier Saviotti, 2014. "Knowledge characteristics and the dynamics of technological alliances in pharmaceuticals: empirical evidence from Europe, US and Japan," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 587-622, July.
    6. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    7. Orsenigo, L. & Pammolli, F. & Riccaboni, Massimo, 2001. "Technological change and network dynamics: Lessons from the pharmaceutical industry," Research Policy, Elsevier, vol. 30(3), pages 485-508, March.
    8. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    9. Sidney G. Winter, 2008. "Scaling heuristics shape technology! Should economic theory take notice?," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(3), pages 513-531, June.
    10. Arianna Martinelli & Önder Nomaler, 2014. "Measuring knowledge persistence: a genetic approach to patent citation networks," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 623-652, July.
    11. Kiiski, Sampsa & Pohjola, Matti, 2002. "Cross-country diffusion of the Internet," Information Economics and Policy, Elsevier, vol. 14(2), pages 297-310, June.
    12. Avimanyu Datta, 2016. "Evaluating The Antecedents Of Foundational Innovations: A Longitudinal Look At Patents From Information Technology Industry," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, January.
    13. David G. McKendrick & Glenn R. Carroll, 2001. "On the Genesis of Organizational Forms: Evidence from the Market for Disk Arrays," Organization Science, INFORMS, vol. 12(6), pages 661-682, December.
    14. Weitzman, Martin L, 1996. "Hybridizing Growth Theory," American Economic Review, American Economic Association, vol. 86(2), pages 207-212, May.
    15. Frank M. Bass, 2004. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 50(12_supple), pages 1825-1832, December.
    16. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
    17. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    18. Clark, Kim B., 1985. "The interaction of design hierarchies and market concepts in technological evolution," Research Policy, Elsevier, vol. 14(5), pages 235-251, October.
    19. Geels, Frank W., 2014. "Reconceptualising the co-evolution of firms-in-industries and their environments: Developing an inter-disciplinary Triple Embeddedness Framework," Research Policy, Elsevier, vol. 43(2), pages 261-277.
    20. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    21. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    22. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    23. Pistorius, C. W. I. & Utterback, J. M., 1997. "Multi-mode interaction among technologies," Research Policy, Elsevier, vol. 26(1), pages 67-84, March.
    24. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    25. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    26. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    27. Gilsing, Victor & Nooteboom, Bart, 2006. "Exploration and exploitation in innovation systems: The case of pharmaceutical biotechnology," Research Policy, Elsevier, vol. 35(1), pages 1-23, February.
    28. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    29. Daniel A. Levinthal & James G. March, 1993. "The myopia of learning," Strategic Management Journal, Wiley Blackwell, vol. 14(S2), pages 95-112, December.
    30. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    31. Bart Looy & Tom Magerman & Koenraad Debackere, 2007. "Developing technology in the vicinity of science: An examination of the relationship between science intensity (of patents) and technological productivity within the field of biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 441-458, February.
    32. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    33. Dosi, Giovanni, 1988. "Sources, Procedures, and Microeconomic Effects of Innovation," Journal of Economic Literature, American Economic Association, vol. 26(3), pages 1120-1171, September.
    34. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    35. Markard, Jochen & Wirth, Steffen & Truffer, Bernhard, 2016. "Institutional dynamics and technology legitimacy – A framework and a case study on biogas technology," Research Policy, Elsevier, vol. 45(1), pages 330-344.
    36. Boon, Wouter & Moors, Ellen, 2008. "Exploring emerging technologies using metaphors - A study of orphan drugs and pharmacogenomics," Social Science & Medicine, Elsevier, vol. 66(9), pages 1915-1927, May.
    37. Jackie Krafft & Francesco Quatraro & Pier Paolo Saviotti, 2014. "Knowledge characteristics and the dynamics of technological alliances in pharmaceuticals: empirical evidence from Europe, US and Japan," Post-Print hal-02097581, HAL.
    38. Michael T. Hannan & László Pólos & Glenn R. Carroll, 2007. "Language Matters, from Logics of Organization Theory: Audiences, Codes, and Ecologies," Introductory Chapters, in: Logics of Organization Theory: Audiences, Codes, and Ecologies, Princeton University Press.
    39. Munan Li, 2015. "A novel three-dimension perspective to explore technology evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1679-1697, December.
    40. Corredoira, Rafael A. & Banerjee, Preeta M., 2015. "Measuring patent's influence on technological evolution: A study of knowledge spanning and subsequent inventive activity," Research Policy, Elsevier, vol. 44(2), pages 508-521.
    41. Ad van den Oord & Arjen van Witteloostuijn, 2017. "The Population Ecology of Technology: An Empirical Study of US Biotechnology Patents from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burmaoglu, Serhat & Sartenaer, Olivier & Porter, Alan, 2019. "Conceptual definition of technology emergence: A long journey from philosophy of science to science policy," Technology in Society, Elsevier, vol. 59(C).
    2. Shu-Hao Chang & Chin-Yuan Fan, 2020. "Using Patent Technology Networks to Observe Neurocomputing Technology Hotspots and Development Trends," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    3. De Luca, Gabriele, 2021. "The development of machine intelligence in a computational universe," Technology in Society, Elsevier, vol. 65(C).
    4. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    5. Parraguez, Pedro & Škec, Stanko & e Carmo, Duarte Oliveira & Maier, Anja, 2020. "Quantifying technological change as a combinatorial process," Technological Forecasting and Social Change, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ad van den Oord & Arjen van Witteloostuijn, 2017. "The Population Ecology of Technology: An Empirical Study of US Biotechnology Patents from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-26, January.
    2. Candiani, Juan Antonio & Gilsing, Victor & Mastrogiorgio, Mariano, 2022. "Technological entry in new niches: Diversity, crowding and generalism," Technovation, Elsevier, vol. 116(C).
    3. VAN DEN OORD, Ad & VAN WITTELOOSTUIJN, Arjen & DUYSTERS, Geert & GILSING, Victor, 2010. "The ecology of technology: An empirical study of US biotechnology patents from 1976 to 2003," ACED Working Papers 2010008, University of Antwerp, Faculty of Business and Economics.
    4. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    5. Dibiaggio, Ludovic & Nasiriyar, Maryam & Nesta, Lionel, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Research Policy, Elsevier, vol. 43(9), pages 1582-1593.
    6. Wadhwa, Anu & Phelps, Corey & Kotha, Suresh, 2016. "Corporate venture capital portfolios and firm innovation," Journal of Business Venturing, Elsevier, vol. 31(1), pages 95-112.
    7. Alessandra Colombelli & Francesco Quatraro, 2014. "The persistence of firms' knowledge base: a quantile approach to Italian data," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 23(7), pages 585-610, October.
    8. Gino Cattani, 2005. "Preadaptation, Firm Heterogeneity, and Technological Performance: A Study on the Evolution of Fiber Optics, 1970–1995," Organization Science, INFORMS, vol. 16(6), pages 563-580, December.
    9. Quintana-Garci­a, Cristina & Benavides-Velasco, Carlos A., 2008. "Innovative competence, exploration and exploitation: The influence of technological diversification," Research Policy, Elsevier, vol. 37(3), pages 492-507, April.
    10. Gerard George & Reddi Kotha & Yanfeng Zheng, 2008. "Entry into Insular Domains: A Longitudinal Study of Knowledge Structuration and Innovation in Biotechnology Firms," Journal of Management Studies, Wiley Blackwell, vol. 45(8), pages 1448-1474, December.
    11. repec:hal:spmain:info:hdl:2441/43aq8ffdqb82sbffkv69bt1eaa is not listed on IDEAS
    12. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    13. Vanhaverbeke, Wim & Li, Ying & Van de Vrande, Vareska, 2009. "The dual role of external corporate venturing in technological exploration," MPRA Paper 26488, University Library of Munich, Germany, revised 2010.
    14. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    15. Rajat Khanna & Isin Guler, 2022. "Degree assortativity in collaboration networks and invention performance," Strategic Management Journal, Wiley Blackwell, vol. 43(7), pages 1402-1430, July.
    16. Petros Gkotsis & Antonio Vezzani, 2016. "Technological diffusion as a recombinant process," JRC Working Papers on Corporate R&D and Innovation 2016-07, Joint Research Centre.
    17. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    18. Yang, Hongyan & Steensma, H. Kevin, 2014. "When do firms rely on their knowledge spillover recipients for guidance in exploring unfamiliar knowledge?," Research Policy, Elsevier, vol. 43(9), pages 1496-1507.
    19. Frank T. Rothaermel & Andrew M. Hess, 2007. "Building Dynamic Capabilities: Innovation Driven by Individual-, Firm-, and Network-Level Effects," Organization Science, INFORMS, vol. 18(6), pages 898-921, December.
    20. Alessandra Colombelli & Gianluca Orsatti & Francesco Quatraro, 2021. "Local knowledge composition and the emergence of entrepreneurial activities across industries: evidence from Italian NUTS-3 regions," Small Business Economics, Springer, vol. 56(2), pages 613-635, February.
    21. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0197024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.