Advanced Search
MyIDEAS: Login to save this paper or follow this series

On the Existence of Markov Perfect Equilibria in Perfect Information Games

Contents:

Author Info

  • Hannu Salonen

    ()
    (Department of Economics and PCRC, University of Turku, 20014 Turku, Finland)

  • Hannu Vartiainen

    (HECER, P.O. Box 17 (Arkadiankatu 7), FI-00014 University of Helsinki)

Abstract

We study the existence of pure strategy Markov perfect equilibria in two-person perfect information games. There is a state space X and each period player's possible actions are a subset of X. This set of feasible actions depends on the current state, which is determined by the choice of the other player in the previous period. We assume that X is a compact Hausdorff space and that the action correspondence has an acyclic and asymmetric graph. For some states there may be no feasible actions and then the game ends. Payoffs are either discounted sums of utilities of the states visited, or the utility of the state where the game ends. We give sufficient conditions for the existence of equilibrium e.g. in case when either feasible action sets are finite or when players' payoffs are continuously dependent on each other. The latter class of games includes zero-sum games and pure coordination games.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.ace-economics.fi/kuvat/dp68.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Aboa Centre for Economics in its series Discussion Papers with number 68.

as in new window
Length: 22
Date of creation: Oct 2011
Date of revision:
Handle: RePEc:tkk:dpaper:dp68

Contact details of provider:
Postal: Rehtorinpellonkatu 3, FIN-20500 TURKU
Phone: +358 2 333 51
Web page: http://ace-economics.fi
More information through EDIRC

Related research

Keywords: dynamic games; Markov perfect equilibrium;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Borgers, Tilman, 1989. "Perfect equilibrium histories of finite and infinite horizon games," Journal of Economic Theory, Elsevier, vol. 47(1), pages 218-227, February.
  2. Kuipers, J. & Flesch, J. & Schoenmakers, G. & Vrieze, K., 2009. "Pure subgame-perfect equilibria in free transition games," European Journal of Operational Research, Elsevier, vol. 199(2), pages 442-447, December.
  3. Hannu Salonen & Hannu Vartiainen, 2005. "On the Existence of Undominated Elements of Acyclic Relations," Game Theory and Information 0503009, EconWPA.
  4. Livshits, Igor, 2002. "On non-existence of pure strategy Markov perfect equilibrium," Economics Letters, Elsevier, vol. 76(3), pages 393-396, August.
  5. V. Bhaskar & George J. Mailath & Stephen Morris, 2012. "A Foundation for Markov Equilibria in Infinite Horizon Perfect Information Games," PIER Working Paper Archive 12-043, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  6. Roger Lagunoff & Akihiko Matsu, . ""Asynchronous Choice in Repeated Coordination Games''," CARESS Working Papres 96-10, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
  7. Hellwig, Martin & Leininger, Wolfgang & Reny, Philip J. & Robson, Arthur J., 1990. "Subgame perfect equilibrium in continuous games of perfect information: An elementary approach to existence and approximation by discrete games," Journal of Economic Theory, Elsevier, vol. 52(2), pages 406-422, December.
  8. Guilherme Carmona, 2005. "On Games Of Perfect Information: Equilibria, Ε–Equilibria And Approximation By Simple Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 491-499.
  9. Doraszelski, Ulrich & Escobar, Juan, 2008. "A Theory of Regular Markov Perfect Equilibria in Dynamic Stochastic Games: Genericity, Stability, and Purification," CEPR Discussion Papers 6805, C.E.P.R. Discussion Papers.
  10. Gale, Douglas, 1995. "Dynamic Coordination Games," Economic Theory, Springer, vol. 5(1), pages 1-18, January.
  11. Harris, Christopher J, 1985. "Existence and Characterization of Perfect Equilibrium in Games of Perfect Information," Econometrica, Econometric Society, vol. 53(3), pages 613-28, May.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp68. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Aleksandra Maslowska).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.