Advanced Search
MyIDEAS: Login to save this paper or follow this series

On Games of Perfect Information: Equilibria, E-Equilibria and Approximation by Simple Games

Contents:

Author Info

  • Carmona, Guilherme

Abstract

We show that every bounded, continuous at infinity game of perfect information has an "!perfect equilibrium. Our method consists of approximating the payoff function of each player by a sequence of simple functions, and to consider the corresponding sequence of games, each differing form the original game only on the payoff function. In addition, this approach yields a new characterization of perfect equilibria: a strategy f is a perfect equilibrium in such a game G if and only if it is an 1=n!perfect equilibrium in Gn for all n, where fGng stand for our approximation sequence.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://fesrvsd.fe.unl.pt/WPFEUNL/WP2003/wp427.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universidade Nova de Lisboa, Faculdade de Economia in its series FEUNL Working Paper Series with number wp427.

as in new window
Length: 12 pages
Date of creation: 2003
Date of revision:
Handle: RePEc:unl:unlfep:wp427

Contact details of provider:
Postal: Campus de Campolide, 1099-032 Lisboa
Phone: (351) 21 3801638
Fax: (351) 21 3870933
Email:
Web page: http://www.fe.unl.pt
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Fudenberg, Drew & Levine, David, 1983. "Subgame-perfect equilibria of finite- and infinite-horizon games," Journal of Economic Theory, Elsevier, vol. 31(2), pages 251-268, December.
  2. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
  3. Borgers, Tilman, 1991. "Upper hemicontinuity of the correspondence of subgame-perfect equilibrium outcomes," Journal of Mathematical Economics, Elsevier, vol. 20(1), pages 89-106.
  4. Drew Fudenberg & David Levine, 1983. "Limit Games and Limit Equilibria," UCLA Economics Working Papers 289, UCLA Department of Economics.
  5. Harris, Christopher & Vickers, John, 1985. "Perfect Equilibrium in a Model of a Race," Review of Economic Studies, Wiley Blackwell, vol. 52(2), pages 193-209, April.
  6. Hellwig, Martin & Leininger, Wolfgang & Reny, Philip J. & Robson, Arthur J., 1990. "Subgame perfect equilibrium in continuous games of perfect information: An elementary approach to existence and approximation by discrete games," Journal of Economic Theory, Elsevier, vol. 52(2), pages 406-422, December.
  7. Harris, Christopher J, 1985. "Existence and Characterization of Perfect Equilibrium in Games of Perfect Information," Econometrica, Econometric Society, vol. 53(3), pages 613-28, May.
  8. Borgers, Tilman, 1989. "Perfect equilibrium histories of finite and infinite horizon games," Journal of Economic Theory, Elsevier, vol. 47(1), pages 218-227, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Hannu Salonen & Hannu Vartiainen, 2011. "On the Existence of Markov Perfect Equilibria in Perfect Information Games," Discussion Papers 68, Aboa Centre for Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:unl:unlfep:wp427. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sean Story).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.