Advanced Search
MyIDEAS: Login

On the existence of undominated elements of acyclic relations

Contents:

Author Info

  • Salonen, Hannu
  • Vartiainen, Hannu

Abstract

We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V88-50PJWP5-1/2/732c0ba2f22ff99e872fee8cffa9e0a9
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Mathematical Social Sciences.

Volume (Year): 60 (2010)
Issue (Month): 3 (November)
Pages: 217-221

as in new window
Handle: RePEc:eee:matsoc:v:60:y:2010:i:3:p:217-221

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/505565

Related research

Keywords: Acyclic relations Utility function Maximal elements;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
  2. Peris, Josep E. & Subiza, Begona, 1994. "Maximal elements of not necessarily acyclic binary relations," Economics Letters, Elsevier, vol. 44(4), pages 385-388, April.
  3. J.C. R. Alcantud, 2002. "Characterization of the existence of maximal elements of acyclic relations," Economic Theory, Springer, vol. 19(2), pages 407-416.
  4. Campbell, Donald E. & Walker, Mark, 1990. "Maximal elements of weakly continuous relations," Journal of Economic Theory, Elsevier, vol. 50(2), pages 459-464, April.
  5. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
  6. Peris, Josep E. & Subiza, Begona, 1995. "A weak utility function for acyclic preferences," Economics Letters, Elsevier, vol. 48(1), pages 21-24, April.
  7. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Hannu Salonen & Hannu Vartiainen, 2011. "On the Existence of Markov Perfect Equilibria in Perfect Information Games," Discussion Papers 68, Aboa Centre for Economics.
  2. Hannu Salonen, 2013. "Utilitarian Preferences and Potential Games," Discussion Papers 85, Aboa Centre for Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:60:y:2010:i:3:p:217-221. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.