Advanced Search
MyIDEAS: Login

Designing an Optimal 'Tech Fix' Path to Global Climate Stability: R&D in a Multi-Phase Climate Policy Framework

Contents:

Author Info

  • Paul A. David

    ()
    (Stanford Economics Department)

  • Adriaan van Zon

    ()
    (SBE Maastricht University & UNU-MERIT (Maastricht, NL))

Abstract

The research reported here gives priority to understanding the inter-temporal resource allocation requirements of a program of technological changes that could halt global warming by completing the transition to a “green” (zero net CO2- emission) production regime within the possibly brief finite interval that remains before Earth’s climate is driven beyond a catastrophic tipping point. This paper formulates a multi-phase, just-in-time transition model incorporating carbon-based and carbon-free technical options requiring physical embodiment in durable production facilities, and having performance attributes that are amenable to enhancement by directed R&D expenditures. Transition paths that indicate the best ordering and durations of the phases in which intangible and tangible capital formation is taking place, and capital stocks of different types are being utilized in production, or scrapped when replaced types embodying socially more efficient technologies, are obtained from optimizing solutions for each of a trio of related models that couple the global macro-economy’s dynamics with the dynamics of the climate system. They describe the flows of consumption, CO2 emissions and the changing atmospheric concentration of green-house gas (which drives global warming), along with the investment dynamics required for the timely transformation of the production regime. These paths are found as the welfare-optimizing solutions of three different “stacked Hamiltonians”, each corresponding to one of our trio of integrated endogenous growth models that have been calibrated comparably to emulate the basic global setting for the “transition planning” framework of dynamic integrated requirements analysis modeling (DIRAM). As the paper’s introductory section explains, this framework is proposed in preference to the (IAM) approach that environmental and energy economists have made familiar in integrated assessment models of climate policies that would rely on fiscal and regulatory instruments -- but eschew any analysis of the essential technological transformations that would be required for those policies to have the intended effect. Simulation exercises with our models explore the optimized transition paths’ sensitivity to parameter variations, including alternative exogenous specifications of the location of a pair of successive climate “tipping points”: the first of these initiates higher expected rates of damage to productive capacity by extreme weather events driven by the rising temperature of the Earth’s surface; whereas the second, far more serious “climate catastrophe” tipping point occurs at a still higher temperature (corresponding to a higher atmospheric concentration of CO2). In effect, that sets the point before which the transition to a carbon-free global production regime must have been completed in order to secure the possibility of future sustainable development and continued global economic growth.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www-siepr.stanford.edu/repec/sip/12-013.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Stanford Institute for Economic Policy Research in its series Discussion Papers with number 12-013.

as in new window
Length:
Date of creation: Mar 2013
Date of revision:
Handle: RePEc:sip:dpaper:12-013

Contact details of provider:
Postal: 366 Galvez Street, Stanford, California 94305-6015
Phone: (650) 725-1874
Fax: (650) 723-8611
Web page: http://siepr.stanford.edu
More information through EDIRC

Related research

Keywords: global warming; tipping point; catastrophic climate instability; extreme weatherrelated damages; R&D based technical change; embodied technical change; optimal sequencing; multi-phase optimal control; sustainable endogenous growth;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kelly C. de Bruin & Rob B. Dellink & Richard S.J. Tol, 2007. "AD-DICE: an implementation of adaptation in the DICE model," Working Papers FNU-126, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2007.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sip:dpaper:12-013. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne Shor).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.