IDEAS home Printed from https://ideas.repec.org/p/sce/scecf9/642.html
   My bibliography  Save this paper

Specification Search and Stability Analysis

Author

Listed:
  • J. Guillermo Llorente

    (Universidad Autonoma de Madrid)

  • J. del Hoyo

    (Universidad Autonoma de Madrid)

Abstract

Specification analysis precedes model selection for structural analysis or forecasting. To explain a variable, one chooses an optimal subset of k predictors among m indicated variables, often maximizing some goodness of fit or R^2 (or F ). Without such a process, one has potentially misleading data mining. Foster et al. (1997) use maximum R^2 to for this purpose. They feel proper cut-off points of the R^2 distribution require consideration of the selection procedure and hence the use of the distribution function of the maximal R^2 . This difficult function must either be simulated by Monte Carlo or approximated as in Foster et al. with Bonferroni or Rencher and Pun bounds. White (1997) proposes using a 'Reality Check,' comparing forecasting performance of the candidate against a benchmark. Out-of-sample prediction is a good performance test, but choosing the benchmark model is more difficult. Surprisingly the full sample is not often exploited in testing for data mining. We argue that testing with both full sample and recursive estimation along the sample reduces data mining problems. Before accepting a model with significant global R^2 , it is of use to test for coefficient stability and significance of R^2 along the full sample. A sound theoretical model should remain valid if estimated and tested recursively. Foster et al. use R^2 estimated with the full sample. But models may comply with maximal R^2 statistics and be spurious (nonconstant coefficients). We propose to consider the information from the recursive estimations to detect this situation. We add to the processes of model selection and data mining possible parameter variation, which can bias the choice of benchmark model or the specification search among the m variables. Time-varying parameters (TVP) that are assumed constant produce misspecification error, possibly contaminating subsequent analyses. Thus, del Hoyo and Llorente (1998a) study the improvement in forecasting arising by considering non constant parameters. We consider both means (discrimination and stability) for decreasing biases in choosing a model. The first stage uses the R^2 or R^2_{max} to select the optimal explanatory variables. The second stage tests stability and constancy of the relationship. The conditional distributions of the recursive statistics are tabulated, conditional on the discrimination stage. The innovation here is the sequential consideration of both procedures. Section 1 introduces the problem. Section 2 tabulates the distributions of the relevant statistics, and their size and power are considered. Section 3 introduces the sequential procedure described above. The conditional distributions are studied. Section 5 gives an illustration with a model proposed by Campbell, Grossman and Wang (1993). Section 6 concludes.

Suggested Citation

  • J. Guillermo Llorente & J. del Hoyo, 1999. "Specification Search and Stability Analysis," Computing in Economics and Finance 1999 642, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:642
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef99/papers/llorente.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    2. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    3. Foster, F Douglas & Smith, Tom & Whaley, Robert E, 1997. "Assessing Goodness-of-Fit of Asset Pricing Models: The Distribution of the Maximal R-Squared," Journal of Finance, American Finance Association, vol. 52(2), pages 591-607, June.
    4. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2001. "Dangers of data mining: The case of calendar effects in stock returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 249-286, November.
    2. del Hoyo, J & Llorente, J Guillermo, 2001. "Asset Pricing Models, Specification Search, and Stability Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 17(2-3), pages 219-237, June.
    3. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    4. Kausik Chaudhuri & Alok Kumar, 2015. "A Markov-Switching Model for Indian Stock Price and Volume," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(3), pages 239-257, December.
    5. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    6. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2018. "Inference on winners," CeMMAP working papers CWP31/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Jiang Wang, 2002. "Trading Volume and Asset Prices," Annals of Economics and Finance, Society for AEF, vol. 3(2), pages 299-359, November.
    8. Michael Cooper & Huseyin Gulen, 2006. "Is Time-Series-Based Predictability Evident in Real Time?," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1263-1292, May.
    9. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
    10. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    11. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    12. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    13. Roskelley, Kenneth D., 2008. "Cromwell's Rule and the Role of the Prior in the Economic Metric: An Application to the Portfolio Allocation Problem," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 227-236, April.
    14. Andrew W. Lo & Jiang Wang, 2006. "Trading Volume: Implications of an Intertemporal Capital Asset Pricing Model," Journal of Finance, American Finance Association, vol. 61(6), pages 2805-2840, December.
    15. repec:wyi:journl:002135 is not listed on IDEAS
    16. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    17. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    18. Todd E. Clark & Michael W. McCracken, 2006. "Forecasting of small macroeconomic VARs in the presence of instabilities," Research Working Paper RWP 06-09, Federal Reserve Bank of Kansas City.
    19. Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
    20. Jan R. Magnus & Dmitry Danilov, 2004. "Forecast accuracy after pretesting with an application to the stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 251-274.
    21. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.