IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-12-16.html
   My bibliography  Save this paper

Alternative Climate Policies and Intertemporal Emissions Leakage: Quantifying the Green Paradox

Author

Listed:
  • Fischer, Carolyn

    (Resources for the Future)

  • Salant, Stephen

    (Resources for the Future)

Abstract

Efforts to limit cumulative emissions over the next century may be partially thwarted by the responses of fossil fuel suppliers. Current price-cost margins for major reserves are ample, leaving scope for significant price reductions if climate policies reduce demand for fossil fuels through conservation or substitution to clean alternatives. Most models simulating the consequences of climate policies completely disregard these supply responses. As for theoretical models, under standard assumptions they predict such strong supplier responses that climate policies may have no effect on cumulative emissions and may even leave society worse off, suffering damages from global warming sooner and with less time to adapt (the “green paradox”).We contribute to this literature by developing a richer theoretical model that takes account of the different extraction costs and emissons rates of different fossil reserves. We use this model to compare the qualitative effects of four policy options—accelerating cost reductions in the clean backstop technologies, taxing emissions, improving energy efficiency, and a clean fuel blend mandate. We also discuss the consequences of mandating carbon capture and sequestration. All policies can reduce cumulative emissions, but the backstop policy accelerates emissions while conservation policies (energy efficiency or blend mandates) delay emissions. We then calibrate the model using data on costs, reserves, and emissions factors for five major categories of oil. Using this calibrated model, we estimate the interemporal leakage rate—the percentage error in cumulative emissions reductions that would arise if no account is taken of the supply responses of oil producers. We find that conservation policies can have higher intertemporal leakage rates and backstop policies can have lower leakage than an emissions tax. Leakage rates generally decline as the policies become more stringent.

Suggested Citation

  • Fischer, Carolyn & Salant, Stephen, 2012. "Alternative Climate Policies and Intertemporal Emissions Leakage: Quantifying the Green Paradox," RFF Working Paper Series dp-12-16, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-12-16
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/Documents/RFF-DP-12-16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    2. Anthoff, David & Rose, Steven & Tol, Richard S. J. & Waldhoff, Stephanie, 2011. "The time evolution of the social cost of carbon: An application of fund," Economics Discussion Papers 2011-44, Kiel Institute for the World Economy (IfW Kiel).
    3. John Hassler & Per Krusell & Conny Olovsson, 2010. "Oil Monopoly and the Climate," American Economic Review, American Economic Association, vol. 100(2), pages 460-464, May.
    4. Aaditya Mattoo & Arvind Subramanian & Dominique van der Mensbrugghe & Jianwu He, 2009. "Reconciling Climate Change and Trade Policy," Working Papers 189, Center for Global Development.
    5. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    6. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    7. Jon Strand, 2007. "Technology Treaties and Fossil-Fuels Extraction," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 129-142.
    8. Richard S.J. Tol, 2011. "The Social Cost of Carbon," Annual Review of Resource Economics, Annual Reviews, vol. 3(1), pages 419-443, October.
    9. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    10. Mustafa H. Babiker & Thomas F. Rutherford, 2005. "The Economic Effects of Border Measures in Subglobal Climate Agreements," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 99-126.
    11. Thomas Eichner & Rüdiger Pethig, 2011. "Carbon Leakage, The Green Paradox, And Perfect Future Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(3), pages 767-805, August.
    12. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2011. "Would hotelling kill the electric car?," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 281-296, May.
    13. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    14. Reyer Gerlagh, 2011. "Too Much Oil," CESifo Economic Studies, CESifo Group, vol. 57(1), pages 79-102, March.
    15. Dargay, Joyce M. & Gately, Dermot, 2010. "World oil demand's shift toward faster growing and less price-responsive products and regions," Energy Policy, Elsevier, vol. 38(10), pages 6261-6277, October.
    16. Molly Espey, 1996. "Explaining the Variation in Elasticity Estimates of Gasoline Demand in the United States: A Meta-Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 49-60.
    17. Hahn, Robert W. & Ulph, Alistair (ed.), 2012. "Climate Change and Common Sense: Essays in Honour of Tom Schelling," OUP Catalogue, Oxford University Press, number 9780199692873.
    18. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    19. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    20. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    21. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    22. Gerard Gaudet & Michel Moreaux & Stephen W. Salant, 2001. "Intertemporal Depletion of Resource Sites by Spatially Distributed Users," American Economic Review, American Economic Association, vol. 91(4), pages 1149-1159, September.
    23. R. Quentin Grafton & Tom Kompas & Ngo Van Long, 2010. "Biofuels Subsidies and the Green Paradox," CESifo Working Paper Series 2960, CESifo.
    24. John C.B. Cooper, 2003. "Price elasticity of demand for crude oil: estimates for 23 countries," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 27(1), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Schopf, 2013. "Preserving Eastern or Offshore Oil for Preventing Green Paradoxes?," Working Papers CIE 63, Paderborn University, CIE Center for International Economics.
    2. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    3. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    4. Hassan Benchekroun & Gerard (G.C.) van der Meijden & Cees Withagen, 2017. "OPEC, Shale Oil, and Global Warming - On the importance of the order of extraction," Tinbergen Institute Discussion Papers 17-104/VIII, Tinbergen Institute.
    5. Mads Greaker & Michael Hoel & Knut Einar Rosendahl, 2014. "Does a Renewable Fuel Standard for Biofuels Reduce Climate Costs?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(3), pages 337-363.
    6. Hendrik Ritter & Mark Schopf, 2014. "Unilateral Climate Policy: Harmful or Even Disastrous?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 155-178, May.
    7. Ujjayant Chakravorty & Marie‐Hélène Hubert & Beyza Ural Marchand, 2019. "Food for fuel: The effect of the US biofuel mandate on poverty in India," Quantitative Economics, Econometric Society, vol. 10(3), pages 1153-1193, July.
    8. Julien Xavier Daubanes & Fanny Henriet & Katheline Schubert, 2017. "More Gas, Less Coal, and Less CO2? Unilateral CO2 Reduction Policy with More than One Carbon Energy Source," CESifo Working Paper Series 6697, CESifo.
    9. Di Maria, Corrado & Lange, Ian & van der Werf, Edwin, 2014. "Should we be worried about the green paradox? Announcement effects of the Acid Rain Program," European Economic Review, Elsevier, vol. 69(C), pages 143-162.
    10. Quentin Grafton, R. & Kompas, Tom & Van Long, Ngo, 2012. "Substitution between biofuels and fossil fuels: Is there a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 328-341.
    11. Hoel, Michael, 2020. "The rise and fall of bioenergy," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    12. Svenn Jensens & Kristina Mohlin & Karen Pittel & Thomas Sterner, 2015. "An Introduction to the Green Paradox: The Unintended Consequences of Climate Policies," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 246-265.
    13. Roumasset, James A. & Wada, Christopher, 2013. "Energy Costs and the Optimal Use of Groundwater," 2014 Allied Social Sciences Association (ASSA) Annual Meeting, January 3-5, 2014, Philadelphia, PA 161892, Agricultural and Applied Economics Association.
    14. Hallegatte, Stephane & Fay, Marianne & Vogt-Schilb, Adrien, 2013. "Green industrial policies : when and how," Policy Research Working Paper Series 6677, The World Bank.
    15. James Roumasset & Christopher A. Wada, 2014. "Energy, Backstop Endogeneity, and the Optimal Use of Groundwater," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1363-1371.
    16. Michael Olaf Hoel, 2018. "The Rise and Fall of Bioenergy," CESifo Working Paper Series 6971, CESifo.
    17. Julien Daubanes & Pierre Lasserre, 2012. "Non-Renewable Resource Supply: Substitution Effect, Compensation Effect, and All That," CIRANO Working Papers 2012s-28, CIRANO.
    18. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    2. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    3. Waldemar Marz, 2019. "Complex dimensions of climate policy: the role of political economy, capital markets, and urban form," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 85.
    4. Hendrik Ritter & Mark Schopf, 2014. "Unilateral Climate Policy: Harmful or Even Disastrous?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 155-178, May.
    5. Frederick van der Ploeg, 2013. "Cumulative Carbon Emissions and the Green Paradox," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 281-300, June.
    6. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
    7. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    8. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
    9. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    10. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    11. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    12. Christian Beermann, 2015. "Climate Policy and the Intertemporal Supply of Fossil Resources," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 62.
    13. Julien Daubanes & Pierre Lasserre, 2019. "The supply of non-renewable resources," Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 1084-1111, August.
    14. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    15. Frederick van der Ploeg & Cees Withagen, 2015. "Global Warming and the Green Paradox: A Review of Adverse Effects of Climate Policies," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 285-303.
    16. Frederick Van der Ploeg & Cees A. Withagen, 2011. "Too Little Oil, Too Much Coal: Optimal Carbon Tax and when to Phase in Oil, Coal and Renewables," CESifo Working Paper Series 3526, CESifo.
    17. Grafton, R. Quentin & Kompas, Tom & Long, Ngo Van & To, Hang, 2014. "US biofuels subsidies and CO2 emissions: An empirical test for a weak and a strong green paradox," Energy Policy, Elsevier, vol. 68(C), pages 550-555.
    18. Di Maria, Corrado & Lange, Ian & van der Werf, Edwin, 2014. "Should we be worried about the green paradox? Announcement effects of the Acid Rain Program," European Economic Review, Elsevier, vol. 69(C), pages 143-162.
    19. Hoel, Michael, 2013. "Supply Side Climate Policy and the Green Paradox," Memorandum 03/2013, Oslo University, Department of Economics.
    20. Thomas Michielsen, 2013. "Brown Backstops Versus the Green Paradox," OxCarre Working Papers 108, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.

    More about this item

    Keywords

    green paradox; climate change; exhaustible resources;
    All these keywords.

    JEL classification:

    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-12-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.