IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/103745.html
   My bibliography  Save this paper

Importance Sampling for Portfolio Credit Risk in Factor Copula Models

Author

Listed:
  • Parrini, Alessandro

Abstract

This work considers the problem of the estimation of Value at Risk contributions in a portfolio of credits. Each risk contribution is the conditional expected loss of an obligor, given a large loss of the full portfolio. This rare-event framework makes it difficult to obtain accurate and stable estimations via standard Monte Carlo methods. The factor copula models employed to capture the dependence among obligors, poses an additional challenge to this problem. By conveniently modifying the algorithm introduced by Glasserman and Li (2005), this work develops importance sampling schemes which lead to signifivannt variance reduction, both in single and multi-factor models.

Suggested Citation

  • Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:103745
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/103745/1/MPRA_paper_103745.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
    2. Taleb, Nassim Nicholas, 2007. "Black Swans and the Domains of Statistics," The American Statistician, American Statistical Association, vol. 61, pages 198-200, August.
    3. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    4. Schönbucher, Philipp J., 2000. "Factor Models for Portofolio Credit Risk," Bonn Econ Discussion Papers 16/2001, University of Bonn, Bonn Graduate School of Economics (BGSE).
    5. Patrick Gagliardini, 2005. "Stochastic Migration Models with Application to Corporate Risk," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 188-226.
    6. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    7. Paul Glasserman & Wanmo Kang & Perwez Shahabuddin, 2008. "Fast Simulation of Multifactor Portfolio Credit Risk," Operations Research, INFORMS, vol. 56(5), pages 1200-1217, October.
    8. Paul Glasserman & Wanmo Kang & Perwez Shahabuddin, 2007. "Large Deviations In Multifactor Portfolio Credit Risk," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 345-379, July.
    9. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    10. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    11. Lucas, Andre & Klaassen, Pieter & Spreij, Peter & Straetmans, Stefan, 2001. "An analytic approach to credit risk of large corporate bond and loan portfolios," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1635-1664, September.
    12. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Marsaglia, George & Tsang, Wai Wan, 2000. "The Ziggurat Method for Generating Random Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i08).
    15. Sandro Merino & Mark Nyfeler, 2004. "Applying importance sampling for estimating coherent credit risk contributions," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 199-207.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    2. Alejandro Ferrer Pérez & José Casals Carro & Sonia Sotoca López, 2014. "Linking the problems of estimating and allocating unconditional capital," Documentos de Trabajo del ICAE 2014-13, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Andre Lucas & Bastiaan Verhoef, 2012. "Aggregating Credit and Market Risk: The Impact of Model Specification," Tinbergen Institute Discussion Papers 12-057/2/DSF36, Tinbergen Institute.
    4. Hsieh, Ming-Hua & Lee, Yi-Hsi & Shyu, So-De & Chiu, Yu-Fen, 2019. "Estimating multifactor portfolio credit risk: A variance reduction approach," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    5. Koopman, Siem Jan & Kräussl, Roman & Lucas, André & Monteiro, André B., 2009. "Credit cycles and macro fundamentals," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 42-54, January.
    6. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    7. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    8. Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611, arXiv.org.
    9. Cipollini, Andrea & Missaglia, Giuseppe, 2007. "Dynamic Factor analysis of industry sector default rates and implication for Portfolio Credit Risk Modelling," MPRA Paper 3582, University Library of Munich, Germany.
    10. Tim J. Brereton & Dirk P. Kroese & Joshua C. Chan, 2012. "Monte Carlo Methods for Portfolio Credit Risk," ANU Working Papers in Economics and Econometrics 2012-579, Australian National University, College of Business and Economics, School of Economics.
    11. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    12. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    13. Barro, Diana & Basso, Antonella, 2010. "Credit contagion in a network of firms with spatial interaction," European Journal of Operational Research, Elsevier, vol. 205(2), pages 459-468, September.
    14. Correa, Arnildo & Marins, Jaqueline & Neves, Myrian & da Silva, Antonio Carlos, 2014. "Credit Default and Business Cycles: An Empirical Investigation of Brazilian Retail Loans," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(3), September.
    15. Gatfaoui Hayette, 2004. "Idiosyncratic Risk, Systematic Risk and Stochastic Volatility: An Implementation of Merton’s Credit Risk Valuation," Finance 0404004, University Library of Munich, Germany.
    16. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    17. Areski Cousin & Mohamed Reda Kheliouen, 2016. "A comparative study on the estimation of factor migration models," Working Papers halshs-01351926, HAL.
    18. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
    19. Spiliopoulos, Konstantinos & Sowers, Richard B., 2011. "Recovery rates in investment-grade pools of credit assets: A large deviations analysis," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2861-2898.
    20. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.

    More about this item

    Keywords

    Monte Carlo Methods; Importance Sampling; Value-at-Risk; Portfolio Credit Risk; Gaussian Copula Models;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:103745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.