IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i2p199-207.html
   My bibliography  Save this article

Applying importance sampling for estimating coherent credit risk contributions

Author

Listed:
  • Sandro Merino
  • Mark Nyfeler

Abstract

A Monte Carlo simulation method based on importance sampling is applied to the problem of determining individual risk contributions of the obligors in a credit portfolio. The effectiveness of the method is benchmarked against standard Monte Carlo techniques and the asymptotic optimality of the method is proved. The risk measure adopted is expected shortfall, a particualr coherent risk measure. The concept of a coherent risk spectrum is discussed on the basis of some numerical examples.

Suggested Citation

  • Sandro Merino & Mark Nyfeler, 2004. "Applying importance sampling for estimating coherent credit risk contributions," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 199-207.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:2:p:199-207
    DOI: 10.1080/14697680400000024
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680400000024
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680400000024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    2. Rosen, Dan & Saunders, David, 2010. "Risk factor contributions in portfolio credit risk models," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 336-349, February.
    3. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    4. Sunggon Kim & Jisu Yu, 2023. "Stratified importance sampling for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 322(2), pages 819-849, March.
    5. Thomas Siller, 2013. "Measuring marginal risk contributions in credit portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1915-1923, December.
    6. Ferrer, Alex & Casals, José & Sotoca, Sonia, 2016. "Efficient estimation of unconditional capital by Monte Carlo simulation," Finance Research Letters, Elsevier, vol. 16(C), pages 75-84.
    7. Giuseppe Genovese & Ashkan Nikeghbali & Nicola Serra & Gabriele Visentin, 2022. "Universal approximation of credit portfolio losses using Restricted Boltzmann Machines," Papers 2202.11060, arXiv.org, revised Apr 2023.
    8. Dirk Tasche, 2009. "Capital allocation for credit portfolios with kernel estimators," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 581-595.
    9. Giannopoulos, Kostas & Tunaru, Radu, 2005. "Coherent risk measures under filtered historical simulation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 979-996, April.
    10. Grundke, Peter, 2009. "Importance sampling for integrated market and credit portfolio models," European Journal of Operational Research, Elsevier, vol. 194(1), pages 206-226, April.
    11. Paul Glasserman & Wanmo Kang & Perwez Shahabuddin, 2008. "Fast Simulation of Multifactor Portfolio Credit Risk," Operations Research, INFORMS, vol. 56(5), pages 1200-1217, October.
    12. Alejandro Ferrer Pérez & José Casals Carro & Sonia Sotoca López, 2014. "Linking the problems of estimating and allocating unconditional capital," Documentos de Trabajo del ICAE 2014-13, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    13. Cheridito, Patrick & Stadje, Mitja, 2009. "Time-inconsistency of VaR and time-consistent alternatives," Finance Research Letters, Elsevier, vol. 6(1), pages 40-46, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    2. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    3. Marcell Béli & Kata Váradi, 2017. "A possible methodology for determining the initial margin," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(2), pages 119-147.
    4. Stefano Ciliberti & Imre Kondor & Marc Mezard, 2007. "On the feasibility of portfolio optimization under expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 389-396.
    5. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    6. Osmundsen, Kjartan Kloster, 2018. "Using expected shortfall for credit risk regulation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 80-93.
    7. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, June.
    8. Liu, Qingfu & An, Yunbi, 2014. "Risk contributions of trading and non-trading hours: Evidence from Chinese commodity futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 17-29.
    9. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    10. Imre Kondor & Andras Szepessy & Tunde Ujvarosi, 2003. "Concave risk measures in international capital regulation," Papers cond-mat/0307244, arXiv.org.
    11. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    12. repec:wyi:journl:002095 is not listed on IDEAS
    13. Dirk Tasche, 2005. "Measuring sectoral diversification in an asymptotic multi-factor framework," Papers physics/0505142, arXiv.org, revised Jul 2006.
    14. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    15. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    16. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    17. Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.
    18. Zongwu Cai & Xian Wang, 2013. "Nonparametric Methods for Estimating Conditional VaR and Expected Shortfall," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    19. Giannopoulos, Kostas & Tunaru, Radu, 2005. "Coherent risk measures under filtered historical simulation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 979-996, April.
    20. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    21. Chang Cong & Peibiao Zhao, 2018. "Non-Cash Risk Measure on Nonconvex Sets," Mathematics, MDPI, vol. 6(10), pages 1-9, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:2:p:199-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.