Advanced Search
MyIDEAS: Login

A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics

Contents:

Author Info

  • Matthias Fengler
  • Wolfgang Härdle
  • Enno Mammen

Abstract

A primary goal in modelling the implied volatility surface (IVS) for pricing and hedging aims at reducing complexity. For this purpose one fits the IVS each day and applies a principal component analysis using a functional norm. This approach, however, neglects the degenerated string structure of the implied volatility data and may result in a modelling bias. We propose a dynamic semiparametric factor model (DSFM), which approximates the IVS in a finite dimensional function space. The key feature is that we only fit in the local neighborhood of the design points. Our approach is a combination of methods from functional principal component analysis and backfitting techniques for additive models. The model is found to have an approximate 10% better performance than a sticky moneyness model. Finally, based on the DSFM, we devise a generalized vega-hedging strategy for exotic options that are priced in the local volatility framework. The generalized vega-hedging extends the usual approaches employed in the local volatility framework.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2005-020.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2005-020.

as in new window
Length: 43 pages
Date of creation: Mar 2005
Date of revision:
Handle: RePEc:hum:wpaper:sfb649dp2005-020

Contact details of provider:
Postal: Spandauer Str. 1,10178 Berlin
Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Email:
Web page: http://sfb649.wiwi.hu-berlin.de
More information through EDIRC

Related research

Keywords: Smile; local volatility; generalized additive model; backfitting; functional principal component analysis;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Yacine Ait-Sahalia & Jefferson Duarte, 2002. "Nonparametric Option Pricing under Shape Restrictions," NBER Working Papers 8944, National Bureau of Economic Research, Inc.
  2. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, 04.
  3. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
  4. George Skiadopoulos & Stewart Hodges & Les Clewlow, 2000. "The Dynamics of the S&P 500 Implied Volatility Surface," Review of Derivatives Research, Springer, vol. 3(3), pages 263-282, October.
  5. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  6. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
  7. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  8. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  9. Joshua Rosenberg, 1999. "Implied Volatility Functions: A Reprise," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-027, New York University, Leonard N. Stern School of Business-.
  10. Aït-Sahalia, Yacine. & Bickel, Peter J. & Stoker, Thomas M., 1994. "Goodness-of-fit tests for regression using kernel methods," Working papers 3747-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  11. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
  12. M. A. H. Dempster & D. G. Richards, 2000. "Pricing American Options Fitting the Smile," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 157-177.
  13. Oliver Linton & Gregory Connor, 2000. "Semiparametric Estimation of a Characteristic-Based Factor Model of Stock Returns," FMG Discussion Papers dp346, Financial Markets Group.
  14. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
  15. Sanjiv R. Das & Rangarajan K. Sundaram, 1998. "Of Smiles and Smirks: A Term-Structure Perspective," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-024, New York University, Leonard N. Stern School of Business-.
  16. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
  17. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-52.
  18. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  19. P. Balland, 2002. "Deterministic implied volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 31-44.
  20. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  21. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
  22. Jianqing Fan & Qiwei Yao & Zongwu Cai, 2003. "Adaptive varying-coefficient linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 57-80.
  23. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  24. Fengler, Matthias R. & Wang, Qihua, 2003. "Fitting the Smile Revisited: A Least Squares Kernel Estimator for the Implied Volatility Surface," SFB 373 Discussion Papers 2003,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Michal Benko & Wolfgang Härdle & Alois Kneip, 2006. "Common Functional Principal Components," SFB 649 Discussion Papers SFB649DP2006-010, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  2. Szymon Borak & Matthias Fengler & Wolfgang Härdle, 2005. "DSFM fitting of Implied Volatility Surfaces," SFB 649 Discussion Papers SFB649DP2005-022, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  3. Wolfgang Karl Härdle,Piotr Majer & Melanie Schienle, 2012. "Yield Curve Modeling and Forecasting using Semiparametric Factor Dynamics," SFB 649 Discussion Papers SFB649DP2012-048, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  4. Ralf Brüggemann & Wolfgang Härdle & Julius Mungo & Carsten Trenkler, 2006. "VAR Modeling for Dynamic Semiparametric Factors of Volatility Strings," SFB 649 Discussion Papers SFB649DP2006-011, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  5. Clifford Lam & Qiwei Yao & Neil Bathia, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2005-020. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.