IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v4y1997i2p81-100.html
   My bibliography  Save this article

An E-ARCH model for the term structure of implied volatility of FX options

Author

Listed:
  • Yingzi Zhu
  • Marco Avellaneda

Abstract

We construct a statistical model for the term-structure of implied volatilities of currency options based on daily historical data for 13 currency pairs over a 19-month period. We examine the joint evolution of 1 month, 2 month, 3 month, 6 month and 1 year at-the-money (50 δ) options in all the currency pairs. We show that there exist three uncorrelated state variables (principal components) which account for the parallel movement, slope oscillation, and curvature of the term structure and which explain, on average, the movements of the termstructure of volatility to more than 95% in all cases. We test and construct an exponential ARCH, or E-ARCH, model for each state variable. One of the applications of this model is to produce confidence bands for the term structure of volatility.

Suggested Citation

  • Yingzi Zhu & Marco Avellaneda, 1997. "An E-ARCH model for the term structure of implied volatility of FX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(2), pages 81-100.
  • Handle: RePEc:taf:apmtfi:v:4:y:1997:i:2:p:81-100
    DOI: 10.1080/13504869700000001
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504869700000001
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504869700000001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    2. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    3. Marco Avellaneda & Antonio ParAS, 1996. "Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(1), pages 21-52.
    4. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. F. Coleman & Y. Kim & Y. Li & M. Patron, 2007. "Robustly Hedging Variable Annuities With Guarantees Under Jump and Volatility Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 347-376, June.
    2. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    3. Philipp Maier & Garima Vasishtha, 2008. "Good Policies or Good Fortune: What Drives the Compression in Emerging Market Spreads?," Staff Working Papers 08-25, Bank of Canada.
    4. Matthias Fengler & Wolfgang Härdle & Enno Mammen, 2005. "A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics," SFB 649 Discussion Papers SFB649DP2005-020, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Martin Magris & Perttu Barholm & Juho Kanniainen, 2017. "Implied volatility smile dynamics in the presence of jumps," Papers 1711.02925, arXiv.org, revised May 2020.
    6. Jacinto Marabel Romo, 2012. "Volatility Regimes For The Vix Index," Revista de Economia Aplicada, Universidad de Zaragoza, Departamento de Estructura Economica y Economia Publica, vol. 20(2), pages 111-134, Autumn.
    7. Dotsis, George, 2017. "The market price of risk of the variance term structure," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 41-52.
    8. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    9. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Lovreta, Lidija & Silaghi, Florina, 2020. "The surface of implied firm’s asset volatility," Journal of Banking & Finance, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    2. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    3. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    4. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    5. Peng He, 2012. "Option Portfolio Value At Risk Using Monte Carlo Simulation Under A Risk Neutral Stochastic Implied Volatility Model," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 6(5), pages 65-72.
    6. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    7. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    8. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    9. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    10. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    11. Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
    12. Siddiqi, Hammad, 2013. "Analogy Making, Option Prices, and Implied Volatility," MPRA Paper 48862, University Library of Munich, Germany.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," MPRA Paper 63218, University Library of Munich, Germany.
    15. Julio Guerrero & Giuseppe Orlando, 2022. "Stochastic Local Volatility models and the Wei-Norman factorization method," Papers 2201.11241, arXiv.org.
    16. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    17. Carey, Alexander, 2006. "Path-conditional forward volatility," MPRA Paper 4964, University Library of Munich, Germany.
    18. Joe Akira Yoshino, 2003. "Market Risk and Volatility in the Brazilian Stock Market," Journal of Applied Economics, Universidad del CEMA, vol. 6, pages 385-403, November.
    19. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    20. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:4:y:1997:i:2:p:81-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.