Advanced Search
MyIDEAS: Login to save this paper or follow this series

Predicting exchange rate volatility: genetic programming vs. GARCH and RiskMetrics

Contents:

Author Info

  • Christopher J. Neely
  • Paul A. Weller

Abstract

This article investigates the use of genetic programming to forecast out-of-sample daily volatility in the foreign exchange market. Forecasting performance is evaluated relative to GARCH(1,1) and RiskMetrics models for two currencies, DEM and JPY. Although the GARCH/RiskMetrics models appear to have a inconsistent marginal edge over the genetic program using the mean-squared-error (MSE) and R2 criteria, the genetic program consistently produces lower mean absolute forecast errors (MAE) at all horizons and for both currencies.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://research.stlouisfed.org/wp/more/2001-009
Download Restriction: no

File URL: http://research.stlouisfed.org/wp/2001/2001-009.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Federal Reserve Bank of St. Louis in its series Working Papers with number 2001-009.

as in new window
Length:
Date of creation: 2001
Date of revision:
Publication status: Published in Federal Reserve Bank of St. Louis Review, May/June 2002, 84(3), pp. 43-54
Handle: RePEc:fip:fedlwp:2001-009

Contact details of provider:
Postal: P.O. Box 442, St. Louis, MO 63166
Fax: (314)444-8753
Web page: http://www.stlouisfed.org/
More information through EDIRC

Order Information:
Email:

Related research

Keywords: Foreign exchange rates ; Forecasting ; Programming (Mathematics);

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  2. Neely, Christopher J., 1999. "Target zones and conditional volatility: The role of realignments," Journal of Empirical Finance, Elsevier, vol. 6(2), pages 177-192, April.
  3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  4. Neely, Christopher J. & Weller, Paul A., 2001. "Technical analysis and central bank intervention," Journal of International Money and Finance, Elsevier, vol. 20(7), pages 949-970, December.
  5. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  6. Newey, Whitney K & West, Kenneth D, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Wiley Blackwell, vol. 61(4), pages 631-53, October.
  7. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  8. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(04), pages 405-426, December.
  9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  10. repec:att:wimass:9317 is not listed on IDEAS
  11. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
  12. West, K.D. & Cho, D., 1993. "The Predictive Ability of Several Models of Exchange Rate Volatility," Working papers 9317r, Wisconsin Madison - Social Systems.
  13. Neely, Christopher J. & Weller, Paul A., 1999. "Technical trading rules in the European Monetary System," Journal of International Money and Finance, Elsevier, vol. 18(3), pages 429-458.
  14. Baillie, Richard T & Bollerslev, Tim, 1991. "Intra-day and Inter-market Volatility in Foreign Exchange Rates," Review of Economic Studies, Wiley Blackwell, vol. 58(3), pages 565-85, May.
  15. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
  16. Chong, Yock Y & Hendry, David F, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Wiley Blackwell, vol. 53(4), pages 671-90, August.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
  2. Christopher J. Neely, 2004. "Implied volatility from options on gold futures: do statistical forecasts add value or simply paint the lilly?," Working Papers 2003-018, Federal Reserve Bank of St. Louis.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2001-009. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Xiao).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.