Advanced Search
MyIDEAS: Login to save this paper or follow this series

Monte Carlo-Based Tail Exponent Estimator

Contents:

Author Info

Abstract

In this paper we study the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our method is not sensitive to the choice of k and works well also on small samples. The new estimator gives unbiased results with symmetrical con_dence intervals. Finally, we demonstrate the power of our estimator on the main world stock market indices. On the two separate periods of 2002-2005 and 2006-2009 we estimate the tail exponent.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://ies.fsv.cuni.cz/default/file/download/id/13291
Download Restriction: no

Bibliographic Info

Paper provided by Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies in its series Working Papers IES with number 2010/06.

as in new window
Length: 21 pages
Date of creation: Apr 2010
Date of revision: Apr 2010
Handle: RePEc:fau:wpaper:wp2010_06

Contact details of provider:
Postal: Opletalova 26, CZ-110 00 Prague
Phone: +420 2 222112330
Fax: +420 2 22112304
Email:
Web page: http://ies.fsv.cuni.cz/
More information through EDIRC

Related research

Keywords: Hill estimator; α-stable distributions; tail exponent estimation;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Niklas Wagner & Terry Marsh, 2004. "Tail index estimation in small smaples Simulation results for independent and ARCH-type financial return models," Statistical Papers, Springer, vol. 45(4), pages 545-561, October.
  2. Mantegna, Rosario N & Palágyi, Zoltán & Stanley, H.Eugene, 1999. "Applications of statistical mechanics to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 216-221.
  3. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
  4. Einmahl, J. & Dekkers, A. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Open Access publications from Tilburg University urn:nbn:nl:ui:12-125712, Tilburg University.
  5. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
  6. Plerou, V & Gopikrishnan, P & Rosenow, B & Amaral, L.A.N & Stanley, H.E, 2000. "A random matrix theory approach to financial cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 374-382.
  7. Rafal Weron, 2003. "Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime," Econometrics 0305003, EconWPA.
  8. Xavier Gabaix & Rustam Ibragimov, 2007. "Rank-1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents," NBER Technical Working Papers 0342, National Bureau of Economic Research, Inc.
  9. Szymon Borak & Wolfgang Härdle & Rafal Weron, 2005. "Stable Distributions," SFB 649 Discussion Papers SFB649DP2005-008, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  10. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Plerou, V, 2000. "Scale invariance and universality of economic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(1), pages 31-41.
  11. Stanley, H.Eugene, 2003. "Statistical physics and economic fluctuations: do outliers exist?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(1), pages 279-292.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jozef Barunik & Tomaso Aste & Tiziana Di Matteo & Ruipeng Liu, 2012. "Understanding the source of multifractality in financial markets," Papers 1201.1535, arXiv.org, revised Jan 2012.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2010_06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lenka Herrmannova).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.