Advanced Search
MyIDEAS: Login to save this article or follow this journal

A random matrix theory approach to financial cross-correlations

Contents:

Author Info

  • Plerou, V
  • Gopikrishnan, P
  • Rosenow, B
  • Amaral, L.A.N
  • Stanley, H.E
Registered author(s):

    Abstract

    It is common knowledge that any two firms in the economy are correlated. Even firms belonging to different sectors of an industry may be correlated because of “indirect” correlations. How can we analyze and understand these correlations? This article reviews recent results regarding cross-correlations between stocks. Specifically, we use methods of random matrix theory (RMT), which originated from the need to understand the interactions between the constituent elements of complex interacting systems, to analyze the cross-correlation matrix C of returns. We analyze 30-min returns of the largest 1000 US stocks for the 2-year period 1994–1995. We find that the statistics of approximately 20 of the largest eigenvalues (2%) show deviations from the predictions of RMT. To test that the rest of the eigenvalues are genuinely random, we test for universal properties such as eigenvalue spacings and eigenvalue correlations, and demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. The statistics of the eigenvectors of C confirm the deviations of the largest few eigenvalues from the RMT prediction. We also find that these deviating eigenvectors are stable in time. In addition, we quantify the number of firms that participate significantly to an eigenvector using the concept of inverse participation ratio, borrowed from localization theory.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100003769
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 287 (2000)
    Issue (Month): 3 ()
    Pages: 374-382

    as in new window
    Handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:374-382

    Contact details of provider:
    Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    Related research

    Keywords: Random matrix theory; Cross-correlations; Econophysics;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Eterovic, Nicolas A. & Eterovic, Dalibor S., 2013. "Separating the wheat from the chaff: Understanding portfolio returns in an emerging market," Emerging Markets Review, Elsevier, vol. 16(C), pages 145-169.
    2. Daly, J. & Crane, M. & Ruskin, H.J., 2008. "Random matrix theory filters in portfolio optimisation: A stability and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4248-4260.
    3. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    4. Ormerod, Paul, 2008. "Random Matrix Theory and Macro-Economic Time-Series: An Illustration Using the Evolution of Business Cycle Synchronisation, 1886-2006," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy, vol. 2(26), pages 1-10.
    5. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    6. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:374-382. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.