IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/16007.html
   My bibliography  Save this paper

Substitution between Purchased Electricity and Fuel for Onsite Power Generation in the Manufacturing Industry: Plant level analysis in Japan

Author

Listed:
  • KITAMURA Toshihiko
  • MANAGI Shunsuke

Abstract

Using plant level data, we investigate the substitution between purchased electricity and fuel usage for onsite power generation by estimating the cross price elasticities in Japan. We find that the sensitivity of the fuel demand for onsite power generation to the changes in the price of purchased electricity and the degree of sensitivity depend heavily on industrial characteristics. We also calculate the expenditure elasticities for the fuels and find that firms prefer to use electricity generated on site compared to purchased electricity. Furthermore, from the analysis of the preference for fuel types used in onsite generation, we find that coal, which is relatively inexpensive but has relatively high CO₂ emission, is increasingly preferred by firms across industries. Some industries indeed are contributing to the reduction of CO₂ emissions by either replacing oil with scrap materials as fuel and/or utilizing recovered fuel or byproducts to generate onsite power. The results indicate the effort capacity to reduce emissions appears to heavily depend on industrial characteristics.

Suggested Citation

  • KITAMURA Toshihiko & MANAGI Shunsuke, 2016. "Substitution between Purchased Electricity and Fuel for Onsite Power Generation in the Manufacturing Industry: Plant level analysis in Japan," Discussion papers 16007, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:16007
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/16e007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barnett, A. H. & Reutter, Keith & Thompson, Henry, 1998. "Electricity substitution: some local industrial evidence," Energy Economics, Elsevier, vol. 20(4), pages 411-419, September.
    2. Wales, T. J. & Woodland, A. D., 1983. "Estimation of consumer demand systems with binding non-negativity constraints," Journal of Econometrics, Elsevier, vol. 21(3), pages 263-285, April.
    3. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    4. Bousquet, Alain & Ivaldi, Marc, 1998. "An individual choice model of energy mix," Resource and Energy Economics, Elsevier, vol. 20(3), pages 263-286, September.
    5. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Berndt, Ernst R & Wood, David O, 1979. "Engineering and Econometric Interpretations of Energy-Capital Complementarity," American Economic Review, American Economic Association, vol. 69(3), pages 342-354, June.
    7. Isamu Matsukawa & Yoshifumi Fujii & Seishi Madono, 1993. "Price, Environmental Regulation, and Fuel Demand: Econometric Estimates for Japanese Manufacturing Industries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 37-56.
    8. Lee, Lung-Fei & Pitt, Mark M., 1987. "Microeconometric models of rationing, imperfect markets, and non-negativity constraints," Journal of Econometrics, Elsevier, vol. 36(1-2), pages 89-110.
    9. Caves, Douglas W. & Christensen, Laurits R., 1980. "Econometric analysis of residential time-of-use electricity pricing experiments," Journal of Econometrics, Elsevier, vol. 14(3), pages 287-306, December.
    10. Considine, Timothy J., 1989. "Separability, functional form and regulatory policy in models of interfuel substitution," Energy Economics, Elsevier, vol. 11(2), pages 82-94, April.
    11. Bousquet, Alain & Ladoux, Norbert, 2006. "Flexible versus designated technologies and interfuel substitution," Energy Economics, Elsevier, vol. 28(4), pages 426-443, July.
    12. Alston, Julian M & Foster, Kenneth A & Green, Richard D, 1994. "Estimating Elasticities with the Linear Approximate Almost Ideal Demand System: Some Monte Carlo Results," The Review of Economics and Statistics, MIT Press, vol. 76(2), pages 351-356, May.
    13. Thomas Bue Bjorner & Henrik Holm Jensen, 2002. "Interfuel Substitution within Industrial Companies: An Analysis Based on Panel Data at Company Level," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 27-50.
    14. Berndt, Ernst R & Wood, David O, 1981. "Engineering and Econometric Interpretations of Energy-Capital Complementarity: Reply and Further Results," American Economic Review, American Economic Association, vol. 71(5), pages 1105-1110, December.
    15. Fuss, Melvyn A., 1977. "The demand for energy in Canadian manufacturing : An example of the estimation of production structures with many inputs," Journal of Econometrics, Elsevier, vol. 5(1), pages 89-116, January.
    16. Dale W. Jorgenson & Lawrence J. Lau, 1975. "The Structure of Consumer Preferences," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 4, number 1, pages 49-101, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Raja Chakir & Alain Bousquet & Norbert Ladoux, 2004. "Modeling corner solutions with panel data: Application to the industrial energy demand in France," Empirical Economics, Springer, vol. 29(1), pages 193-208, January.
    3. Raja Chakir & Alban Thomas, 2003. "Simulated maximum likelihood estimation of demand systems with corner solutions and panel data application to industrial energy demand," Revue d'économie politique, Dalloz, vol. 113(6), pages 773-799.
    4. Bousquet, Alain & Ladoux, Norbert, 2006. "Flexible versus designated technologies and interfuel substitution," Energy Economics, Elsevier, vol. 28(4), pages 426-443, July.
    5. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
    6. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
    7. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
    8. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
    9. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    10. Rosario Crinò, 2010. "Service Offshoring and White-Collar Employment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 595-632.
    11. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    12. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    13. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    14. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
    15. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    16. Lundmark, Robert & Soderholm, Patrik, 2004. "Estimating and decomposing the rate of technical change in the Swedish pulp and paper industry: A general index approach," International Journal of Production Economics, Elsevier, vol. 91(1), pages 17-35, September.
    17. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    18. Meyerhoefer, Chad D. & Ranney, Christine K. & Sahn, David E., 2003. "Consistent Estimation Of Longitudinal Censored Demand Systems: An Application To Transition Country Data," Working Papers 127252, Cornell University, Department of Applied Economics and Management.
    19. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
    20. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:16007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.