IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2015-30.html
   My bibliography  Save this paper

Controlling carbon emissions from U.S. power plants: how a tradable performance standard compares to a carbon tax

Author

Listed:
  • Warwick J. McKibbin
  • Adele Morris
  • Peter J. Wilcoxen

Abstract

Different pollution control policies, even if they achieve the same emissions goal, could have importantly different effects on the composition of the energy sector and economic outcomes. In this paper, we use the G-Cubed model of the global economy to compare two basic policy approaches for controlling carbon emissions from power plants: a tradable performance standard and a carbon tax. We choose these two approaches because they resemble two key options facing policymakers: continue implementing a performance standard approach under the Clean Air Act or adopt an excise tax on the carbon content of fossil fuels instead. Our goal is to highlight the important high-level differences in these basic approaches, abstracting from the details of specific policy proposals. We explore a wide variety of the illustrative policies’ economic outcomes including: changes in capital stocks and electricity production across eight types of generators, changes in end-user electricity prices, changes in gross domestic product (GDP), overall welfare impacts on the household sector and, finally, one outcome represented in the G-Cubed model and few others: short to medium-run changes in aggregate employment.

Suggested Citation

  • Warwick J. McKibbin & Adele Morris & Peter J. Wilcoxen, 2015. "Controlling carbon emissions from U.S. power plants: how a tradable performance standard compares to a carbon tax," CAMA Working Papers 2015-30, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2015-30
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2015-08/30_2015_mckibbin_morris_wilcoxen.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    2. Palmer, Karen & Burtraw, Dallas, 2005. "Cost-effectiveness of renewable electricity policies," Energy Economics, Elsevier, vol. 27(6), pages 873-894, November.
    3. Burtraw, Dallas & Fraas, Arthur G. & Richardson, Nathan, 2012. "Tradable Standards for Clean Air Act Carbon Policy," RFF Working Paper Series dp-12-05, Resources for the Future.
    4. Palmer, Karen & Paul, Anthony & Woerman, Matt & Steinberg, Daniel C., 2011. "Federal policies for renewable electricity: Impacts and interactions," Energy Policy, Elsevier, vol. 39(7), pages 3975-3991, July.
    5. Nic Rivers & Mark Jaccard, 2010. "Intensity-Based Climate Change Policies in Canada," Canadian Public Policy, University of Toronto Press, vol. 36(4), pages 409-428, December.
    6. Paul, Anthony & Palmer, Karen & Woerman, Matt, 2013. "Modeling a clean energy standard for electricity: Policy design implications for emissions, supply, prices, and regions," Energy Economics, Elsevier, vol. 36(C), pages 108-124.
    7. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    8. McKibbin, Warwick J. & Wilcoxen, Peter J., 2013. "A Global Approach to Energy and the Environment," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 995-1068, Elsevier.
    9. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    10. Coffman, Makena & Griffin, James P. & Bernstein, Paul, 2012. "An assessment of greenhouse gas emissions-weighted clean energy standards," Energy Policy, Elsevier, vol. 45(C), pages 122-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morris, Adele C. & Nivola, Pietro S. & Schultze, Charles L., 2012. "Clean energy: Revisiting the challenges of industrial policy," Energy Economics, Elsevier, vol. 34(S1), pages 34-42.
    2. Karen Maguire & Abdul Munasib, 2013. "Do Renewables Portfolio Standards Increase Electricity Prices? A Synthetic Control Approach," Economics Working Paper Series 1403, Oklahoma State University, Department of Economics and Legal Studies in Business, revised Aug 2013.
    3. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    4. Anthony Oliver & Madhu Khanna, 2018. "The spatial distribution of welfare costs of Renewable Portfolio Standards in the United States electricity sector," Letters in Spatial and Resource Sciences, Springer, vol. 11(3), pages 269-287, October.
    5. Fischer, Carolyn & Greaker, Mads & Rosendahl, Knut Einar, 2018. "Strategic technology policy as a supplement to renewable energy standards," Resource and Energy Economics, Elsevier, vol. 51(C), pages 84-98.
    6. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    7. Karen Maguire & Abdul Munasib, 2018. "Electricity Price Increase in Texas: What is the Role of RPS?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 293-316, February.
    8. Amedeo Argentiero, Tarek Atalla, Simona Bigerna, Silvia Micheli, and Paolo Polinori, 2017. "Comparing Renewable Energy Policies in EU-15, U.S. and China: A Bayesian DSGE Model," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    9. Amigues, Jean-Pierre & Chakravorty, Ujjayant & Lafforgue, Gilles & Moreaux, Michel, 2012. "Renewable Portfolio Standards and implicit tax-subsidy schemes: Structural differences induced by quantity and proportional mandates," IDEI Working Papers 698, Institut d'Économie Industrielle (IDEI), Toulouse.
    10. Heimvik, Arild & Amundsen, Eirik S., 2019. "Prices vs. percentages: Use of tradable green certificates as an instrument of greenhouse gas mitigation," Working Papers in Economics 1/19, University of Bergen, Department of Economics.
    11. Ino, Hiroaki & Matsumura, Toshihiro, 2021. "Promoting green or restricting gray? An analysis of green portfolio standards," Economics Letters, Elsevier, vol. 198(C).
    12. Hitaj, Claudia, 2015. "Location matters: The impact of renewable power on transmission congestion and emissions," Energy Policy, Elsevier, vol. 86(C), pages 1-16.
    13. Nori Tarui, 2017. "Electric utility regulation under enhanced renewable energy integration and distributed generation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(3), pages 503-518, July.
    14. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    15. Arild Heimvik & Eirik S. Amundsen, 2019. "Prices vs. percentages: use of tradable green certificates as an instrument of greenhouse gas mitigation," CESifo Working Paper Series 7521, CESifo.
    16. Bryan K. Mignone & Thomas Alfstad & Aaron Bergman & Kenneth Dubin & Richard Duke & Paul Friley & Andrew Martinez & Matthew Mowers & Karen Palmer & Anthony Paul & Sharon Showalter & Daniel Steinberg & , 2012. "Cost-effectiveness and Economic Incidence of a Clean Energy Standard," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 3).
    17. Steve Charnovitz & Carolyn Fischer, 2014. "Canada – Renewable Energy: Implications for WTO Law on Green and Not-so-Green Subsidies," Working Papers 2014.94, Fondazione Eni Enrico Mattei.
    18. Elizabeth Baldwin, Yongyang Cai, Karlygash Kuralbayeva, 2018. "To build or not to build? Capital stocks and climate policy," GRI Working Papers 290, Grantham Research Institute on Climate Change and the Environment.
    19. Herche, Wesley, 2017. "Solar energy strategies in the U.S. utility market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 590-595.
    20. Lecuyer, Oskar & Quirion, Philippe, 2013. "Can uncertainty justify overlapping policy instruments to mitigate emissions?," Ecological Economics, Elsevier, vol. 93(C), pages 177-191.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2015-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.