Advanced Search
MyIDEAS: Login

A Simple Benchmark for Forecasts of Growth and Inflation

Contents:

Author Info

  • Marcellino, Massimiliano

Abstract

A theoretical model for growth or inflation should be able to reproduce the empirical features of these variables better than competing alternatives. Therefore, it is common practice in the literature, whenever a new model is suggested, to compare its performance with that of a benchmark model. However, while the theoretical models become more and more sophisticated, the benchmark typically remains a simple linear time series model. Recent examples are provided, e.g., by articles in the real business cycle literature or by new-keynesian studies on inflation persistence. While a time series model can provide a reasonable benchmark to evaluate the value added of economic theory relative to the pure explanatory power of the past behavior of the variable, recent developments in time series analysis suggest that more sophisticated time series models could provide more serious benchmarks for economic models. In this paper we evaluate whether these complicated time series models can really outperform standard linear models for GDP growth and inflation, and should therefore substitute them as benchmarks for economic theory based models. Since a complicated model specification can over-fit in sample, i.e. the model can spuriously perform very well compared to simpler alternatives, we conduct the model comparison based on the out of sample forecasting performance. We consider a large variety of models and evaluation criteria, using real time data and a sophisticated bootstrap algorithm to evaluate the statistical significance of our results. Our main conclusion is that in general linear time series models can be hardly beaten if they are carefully specified, and therefore still provide a good benchmark for theoretical models of growth and inflation. However, we also identify some important cases where the adoption of a more complicated benchmark can alter the conclusions of economic analyses about the driving forces of GDP growth and inflation. Therefore, comparing theoretical models also with more sophisticated time series benchmarks can guarantee more robust conclusions.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cepr.org/pubs/dps/DP6012.asp
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 6012.

as in new window
Length:
Date of creation: Dec 2006
Date of revision:
Handle: RePEc:cpr:ceprdp:6012

Contact details of provider:
Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ
Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information:
Email:

Related research

Keywords: growth; inflation; non-linear models; time-varying models;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Clements, Michael P & Hendry, David F, 1996. "Multi-step Estimation for Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 657-84, November.
  2. Timothy Cogley & Thomas J. Sargent, 2002. "Evolving Post-World War II U.S. Inflation Dynamics," NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 331-388 National Bureau of Economic Research, Inc.
  3. Carlo Favero & Massimiliano Marcellino, 2005. "Modelling and Forecasting Fiscal Variables for the Euro Area," Working Papers 298, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  4. Andrew Atkeson & Lee E. Ohanian., 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
  5. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, Elsevier.
  6. Chong, Yock Y & Hendry, David F, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Wiley Blackwell, vol. 53(4), pages 671-90, August.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," CEPR Discussion Papers 6706, C.E.P.R. Discussion Papers.
  2. Groen, Jan J.J. & Kapetanios, George & Price, Simon, 2009. "A real time evaluation of Bank of England forecasts of inflation and growth," International Journal of Forecasting, Elsevier, vol. 25(1), pages 74-80.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:6012. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.