Advanced Search
MyIDEAS: Login to save this paper or follow this series

The socially optimal energy transition in a residential neighbourhood in the Netherlands

Contents:

Author Info

  • Arie ten Cate

    ()

Abstract

The coming energy transition in residential neighbourhoods in the Netherlands is the result of the increasing cost of CO2 emission and the decreasing costs of solar PhotoVoltaics (PV) and alternative techniques of residential heating, namely Combined Heat and Power (CHP) and heat pump. The optimal transition is found by minimizing the total discounted social costs of residential energy consumption and generation. Social costs include the cost of CO2 emission and the investment in the electric network. The model integrates economics and the electric constraints based on the Alternating Current (AC) network power flow. The results indicate that in the optimal transition nearly all houses are going to use an air-to-water heat pump with auxiliary gas heating. This shift from gas to electricity depends very little on the future CO2 price or the network costs. Solar PV is not yet socially profitable at this moment. The "business case" for a household, using private costs, includes taxes and excludes CO2 costs and uses a higher discount rate. In the resulting optimum no heat pumps are used. However, reducing the ratio of the electricity tax versus the gas tax moves the private optimum to the social optimum. In order to use the model (with GAMS) or to verify table 18 (with Octave/Matlab), download the packed file below (If needed: rename it from�.txt� to .zip and unpack the file). After the publication , the following problem was noted by a reader. According to section 5.3, first paragraph, the heat pump is socially optimal in the old neighbourhood. However, in general this is somewhat unrealistic: the heat pump has a low water temperature, requiring enlarging the capacity of the radiators. Also: "starting at 20 euro" at page 11 is simply the actual value up to 2010.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cpb.nl/sites/default/files/publicaties/download/cpb-discussion-paper-222-socially-optimal-energy-transition-residential-neighbourhood-netherlands_0.pdf
Download Restriction: no

Bibliographic Info

Paper provided by CPB Netherlands Bureau for Economic Policy Analysis in its series CPB Discussion Paper with number 222.

as in new window
Length:
Date of creation: Nov 2012
Date of revision:
Handle: RePEc:cpb:discus:222

Contact details of provider:
Postal: Postbus 80510, 2508 GM Den Haag
Phone: (070) 338 33 80
Fax: (070) 338 33 50
Email:
Web page: http://www.cpb.nl/
More information through EDIRC

Related research

Keywords:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Macintosh, Andrew & Wilkinson, Deb, 2011. "Searching for public benefits in solar subsidies: A case study on the Australian government's residential photovoltaic rebate program," Energy Policy, Elsevier, vol. 39(6), pages 3199-3209, June.
  2. Helena Meier & Katrin Rehdanz, 2008. "Determinants of residential space heating expenditures in Great Britain," Kiel Working Papers 1439, Kiel Institute for the World Economy.
  3. Arie ten Cate, 2010. "Hourglass models of world-wide problems such as climate change," CPB Memorandum 238, CPB Netherlands Bureau for Economic Policy Analysis.
  4. Rob Aalbers & Viktoria Kocsis & Victoria Shestalova, 2011. "Optimal regulation under unknown supply of distributed generation," CPB Discussion Paper 192, CPB Netherlands Bureau for Economic Policy Analysis.
  5. Braun, Frauke G., 2010. "Determinants of households' space heating type: A discrete choice analysis for German households," Energy Policy, Elsevier, vol. 38(10), pages 5493-5503, October.
  6. Goto, Hisanori & Goto, Mika & Sueyoshi, Toshiyuki, 2011. "Consumer choice on ecologically efficient water heaters: Marketing strategy and policy implications in Japan," Energy Economics, Elsevier, vol. 33(2), pages 195-208, March.
  7. Monahan, J. & Powell, J.C., 2011. "A comparison of the energy and carbon implications of new systems of energy provision in new build housing in the UK," Energy Policy, Elsevier, vol. 39(1), pages 290-298, January.
  8. Mozumder, Pallab & Vásquez, William F. & Marathe, Achla, 2011. "Consumers' preference for renewable energy in the southwest USA," Energy Economics, Elsevier, vol. 33(6), pages 1119-1126.
  9. DeCarolis, Joseph F., 2011. "Using modeling to generate alternatives (MGA) to expand our thinking on energy futures," Energy Economics, Elsevier, vol. 33(2), pages 145-152, March.
  10. Katrin Rehdanz, 2005. "Determinants Of Residential Space Heating Expenditures In Germany," Working Papers FNU-66, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2005.
  11. Durand-Lasserve, Olivier & Pierru, Axel & Smeers, Yves, 2010. "Uncertain long-run emissions targets, CO2 price and global energy transition: A general equilibrium approach," Energy Policy, Elsevier, vol. 38(9), pages 5108-5122, September.
  12. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
  13. Manning, Neil & Rees, Ray, 1982. "Synthetic demand functions for solar energy," Energy Economics, Elsevier, vol. 4(4), pages 225-231, October.
  14. Vaage, Kjell, 2000. "Heating technology and energy use: a discrete/continuous choice approach to Norwegian household energy demand," Energy Economics, Elsevier, vol. 22(6), pages 649-666, December.
  15. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cpb:discus:222. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.