Advanced Search
MyIDEAS: Login

Modelling time series count data: an autoregressive conditional Poisson model

Contents:

Author Info

  • HEINEN, Andréas

Abstract

This paper introduces and evaluates new models for time series count data. The Autoregressive Conditional Poisson model (ACP) makes it possible to deal with issues of discreteness, overdispersion (variance greater than the mean) and serial correlation. A fully parametric approach is taken and a marginal distribution for the counts is specified, where conditional on past observations the mean is autoregressive. This enables to attain improved inference on coefficients of exogenous regressors relative to static Poisson regression, which is the main concern of the existing literature, while modelling the serial correlation in a flexible way. A variety of models, based on the double Poisson distribution of Efron (1986) is introduced, which in a first step introduce an additional dispersion parameter and in a second step make this dispersion parameter time-varying. All models are estimated using maximum likelihood which makes the usual tests available. In this framework autocorrelation can be tested with a straightforward likelihood ratio test, whose simplicity is in sharp contrast with test procedures in the latent variable time series count model of Zeger (1988). The models are applied to the time series of monthly polio cases in the U.S between 1970 and 1983 as well as to the daily number of price change durations of .75$ on the IBM stock. A .75$ price-change duration is defined as the time it takes the stock price to move by at least .75$. The variable of interest is the daily number of such durations, which is a measure of intradaily volatility, since the more volatile the stock price is within a day, the larger the counts will be. The ACP models provide good density forecasts of this measure of volatility.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://alfresco.uclouvain.be/alfresco/download/attach/workspace/SpacesStore/a23d2a67-0896-442c-91b9-7077961caf80/coredp_2003_62.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2003062.

as in new window
Length:
Date of creation: 00 Sep 2003
Date of revision:
Handle: RePEc:cor:louvco:2003062

Contact details of provider:
Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Email:
Web page: http://www.uclouvain.be/core
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, 1997. "Evaluating density forecasts," Working Papers 97-6, Federal Reserve Bank of Philadelphia.
  2. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-17, October.
  3. Gurmu, Shiferaw & Trivedi, Pravin K., 1993. "Variable Augmentation Specification Tests in the Exponential Family," Econometric Theory, Cambridge University Press, vol. 9(01), pages 94-113, January.
  4. Lee, Charles M C & Ready, Mark J, 1991. " Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-46, June.
  5. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  6. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422, October.
  7. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  8. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. BEN OMRANE, Walid & HEINEN, Andréas, 2003. "The response of individual FX dealers'quoting activity to macroeconomic news announcements," CORE Discussion Papers 2003070, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Tianqing Liu & Xiaohui Yuan, 2013. "Random rounded integer-valued autoregressive conditional heteroskedastic process," Statistical Papers, Springer, vol. 54(3), pages 645-683, August.
  3. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
  4. J. Keith Ord & Rob J. Hyndman & Anne B. Koehler & Ralph D. Snyder, 2008. "Monitoring Processes with Changing Variances," Monash Econometrics and Business Statistics Working Papers 4/08, Monash University, Department of Econometrics and Business Statistics.
  5. Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data : Modelling and Estimation," Economics Working Papers 2005,08, Christian-Albrechts-University of Kiel, Department of Economics.
  6. Christian Weiß, 2009. "Modelling time series of counts with overdispersion," Statistical Methods and Applications, Springer, vol. 18(4), pages 507-519, November.
  7. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
  8. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
  9. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
  10. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
  11. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 21(3), pages 413-438, September.
  12. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
  13. Kurt Brannas & A. M. M. Shahiduzzaman Quoreshi, 2010. "Integer-valued moving average modelling of the number of transactions in stocks," Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1429-1440.
  14. Ralph D. Snyder & Adrian Beaumont, 2007. "A Comparison of Methods for Forecasting Demand for Slow Moving Car Parts," Monash Econometrics and Business Statistics Working Papers 15/07, Monash University, Department of Econometrics and Business Statistics.
  15. Jung, Robert C. & Liesenfeld, Roman & Richard, Jean-François, 2011. "Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 73-85.
  16. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
  17. Quoreshi, Shahiduzzaman, 2005. "Modelling High Frequency Financial Count Data," UmeÃ¥ Economic Studies 656, Umeå University, Department of Economics.
  18. Ghahramani, M. & Thavaneswaran, A., 2009. "On some properties of Autoregressive Conditional Poisson (ACP) models," Economics Letters, Elsevier, vol. 105(3), pages 273-275, December.
  19. Juan Dolado, 2012. "Comments on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 21(3), pages 442-446, September.
  20. Weiß, Christian H., 2010. "INARCH(1) processes: Higher-order moments and jumps," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1771-1780, December.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2003062. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.