IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt1rz000pf.html
   My bibliography  Save this paper

Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies

Author

Listed:
  • Srinivasa Raghavan, Seshadri

Abstract

Accelerating the adoption of plug-in electric vehicles (PEVs), is critical to reduce GHG emissions in the light duty vehicle sector. Conventional PEV usage and GHG assessments are largely based on assumptions drawn from stated preferences and choice experiments of potential or current PEV owners, or self-reported travel and refueling diaries of mainstream internal combustion engine(ICE) users. This dissertation focuses on observed behavior of current PEV users. I present three studies that seek to improve our understanding of PEV driving and charging typified by two levels of disaggregation- vehicle level and household level. First study develops an analytical procedure to quantify what aspects of driving and charging behavior contributes to the gap between observed PHEV Utility Factors and Society of Automotive Engineers (SAE) J2841 expectations. Results indicated that depending on the PHEV range, roughly ±45% of deviations is attributable charging behavior. Daily mileage was responsible for -20% to +3% of deviation. Annual mileage and effective charge depleting range achieved on-road influenced the UF deviation by ±25% and -20% to -4% respectively. In the second study, driving and charging behavior differences between short-range (20 miles or less) and long-range (35 miles or more) PHEVs are investigated. It was found that diversity of charging locations is positively associated with electric miles from short-range PHEVs whereas encouraging more home charging increases the electrification benefits of longer-range PHEVs. Third study quantifies the well-to-wheel GHG mitigation potential of Nissan Leaf, Chevrolet Bolt and Tesla Model S at the household level using a multi-year actual usage data from 73 two-car (single BEV and single ICE) California households. Analysis shows that on average 25% of Leaf and Bolt, and 30% of Tesla household’s GHG can be reduced from their current levels by driving the BEV instead of the ICE. Upgrading to a longer-range efficiency oriented BEV and fully charging overnight can mitigate an additional 10-15% household GHG. Upgrading to longer-range sportier performance oriented BEV nearly offset the GHG abatement benefits, but it electrifies the highest share of household miles.

Suggested Citation

  • Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt1rz000pf
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/1rz000pf.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    3. Figenbaum, Erik & Assum, Terje & Kolbenstvedt, Marika, 2015. "Electromobility in Norway: Experiences and Opportunities," Research in Transportation Economics, Elsevier, vol. 50(C), pages 29-38.
    4. Kenneth Gillingham & Matthew J. Kotchen & David S. Rapson & Gernot Wagner, 2013. "The rebound effect is overplayed," Nature, Nature, vol. 493(7433), pages 475-476, January.
    5. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    6. J. H. Wesseling & E. M. M. I. Niesten & J. Faber & M. P. Hekkert, 2015. "Business Strategies of Incumbents in the Market for Electric Vehicles: Opportunities and Incentives for Sustainable Innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 24(6), pages 518-531, September.
    7. Franke, Thomas & Krems, Josef F., 2013. "Interacting with limited mobility resources: Psychological range levels in electric vehicle use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 109-122.
    8. Khan, Mobashwir & Kockelman, Kara M., 2012. "Predicting the market potential of plug-in electric vehicles using multiday GPS data," Energy Policy, Elsevier, vol. 46(C), pages 225-233.
    9. Contestabile, Marcello & Alajaji, Mohammed & Almubarak, Bader, 2017. "Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?," Energy Policy, Elsevier, vol. 110(C), pages 20-30.
    10. Yan Zhou & Michael Wang & Han Hao & Larry Johnson & Hewu Wang & Han Hao, 2015. "Plug-in electric vehicle market penetration and incentives: a global review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 777-795, June.
    11. Plötz, Patrick & Funke, Simon & Jochem, Patrick, 2015. "Real-world fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Working Papers "Sustainability and Innovation" S1/2015, Fraunhofer Institute for Systems and Innovation Research (ISI).
    12. Bruno Dalla Chiara & Francesco Deflorio & Michela Pellicelli & Luca Castello & Marco Eid, 2019. "Perspectives on Electrification for the Automotive Sector: A Critical Review of Average Daily Distances by Light-Duty Vehicles, Required Range, and Economic Outcomes," Sustainability, MDPI, vol. 11(20), pages 1-35, October.
    13. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    14. Hardman, Scott & Plotz, Patrick & Tal, Gil & Axsen, Jonn & Figenbaum, Erik & Karlsson, Sten & Refa, Nazir & Sprei, Frances & Williams, Brett & Whitehead, Jake & Witkamp, Bert, 2019. "Exploring the Role of Plug-In Hybrid Electric Vehicles in Electrifying Passenger Transportation," Institute of Transportation Studies, Working Paper Series qt3w53q2h9, Institute of Transportation Studies, UC Davis.
    15. Tal, Gil & Nicholas, Michael A. & Woodjack, Justin & Scrivano, Daniel, 2013. "Who Is Buying Electric Cars in California? Exploring Household and Vehicle Fleet Characteristics of New Plug-In Vehicle Owners," Institute of Transportation Studies, Working Paper Series qt70f4r9wc, Institute of Transportation Studies, UC Davis.
    16. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    17. Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
    18. Liew Lee Chan & Noraini Idris, 2017. "Validity and Reliability of The Instrument Using Exploratory Factor Analysis and Cronbach’s alpha," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 7(10), pages 400-410, October.
    19. Benjamin Leard, Joshua Linn, and Clayton Munnings, 2019. "Explaining the Evolution of Passenger Vehicle Miles Traveled in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    20. Lucas W. Davis, 2019. "How much are electric vehicles driven?," Applied Economics Letters, Taylor & Francis Journals, vol. 26(18), pages 1497-1502, October.
    21. Choi, Wonjae & Yoo, Eunji & Seol, Eunsu & Kim, Myoungsoo & Song, Han Ho, 2020. "Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea," Applied Energy, Elsevier, vol. 265(C).
    22. Karabasoglu, Orkun & Michalek, Jeremy, 2013. "Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains," Energy Policy, Elsevier, vol. 60(C), pages 445-461.
    23. Patrick Plötz & Simon Árpád Funke & Patrick Jochem, 2018. "Empirical Fuel Consumption and CO2 Emissions of Plug‐In Hybrid Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 773-784, August.
    24. Paffumi, Elena & De Gennaro, Michele & Martini, Giorgio, 2018. "Alternative utility factor versus the SAE J2841 standard method for PHEV and BEV applications," Transport Policy, Elsevier, vol. 68(C), pages 80-97.
    25. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    26. Henry Kaiser, 1970. "A second generation little jiffy," Psychometrika, Springer;The Psychometric Society, vol. 35(4), pages 401-415, December.
    27. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    28. Henry Kaiser, 1974. "An index of factorial simplicity," Psychometrika, Springer;The Psychometric Society, vol. 39(1), pages 31-36, March.
    29. Xu Hao & Yan Zhou & Hewu Wang & Minggao Ouyang, 2020. "Plug-in electric vehicles in China and the USA: a technology and market comparison," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 329-353, March.
    30. Wang, Jianhui & Liu, Cong & Ton, Dan & Zhou, Yan & Kim, Jinho & Vyas, Anantray, 2011. "Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power," Energy Policy, Elsevier, vol. 39(7), pages 4016-4021, July.
    31. Bradley, Thomas H. & Frank, Andrew A., 2009. "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 115-128, January.
    32. Davies, Jamie & Kurani, Kenneth S., 2013. "Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 550-560.
    33. Nicholas, Michael A. & Tal, Gil & Turrentine, Thomas S., 2017. "Advanced Plug-in Electric Vehicle Travel and Charging Behavior Interim Report," Institute of Transportation Studies, Working Paper Series qt9c28789j, Institute of Transportation Studies, UC Davis.
    34. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    35. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    36. Plötz, Patrick & Funke, Simon Árpád & Jochem, Patrick, 2018. "The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 331-340.
    37. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tal, Gil & Karanam, Vaishnavi Chaitanya & Favetti, Matthew P. & Sutton, Katrina May & Ogunmayin, Jade Motayo & Raghavan, Seshadri Srinivasa & Nitta, Christopher & Chakraborty, Debapriya & Davis, Adam , 2021. "Emerging Technology Zero Emission Vehicle Household Travel and Refueling Behavior," Institute of Transportation Studies, Working Paper Series qt2v0853tp, Institute of Transportation Studies, UC Davis.
    2. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    3. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    4. Saiful Hasan & Terje Andreas Mathisen, 2020. "Policy measures for electric vehicle adoption. A review of evidence from Norway and China," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 25-46.
    5. Wang, Xiaoli & Huang, Lucheng & Daim, Tugrul & Li, Xin & Li, Zhiqiang, 2021. "Evaluation of China's new energy vehicle policy texts with quantitative and qualitative analysis," Technology in Society, Elsevier, vol. 67(C).
    6. Choi, Siwon & Kwak, Kyuil & Yang, Soyoung & Lim, Sesil & Woo, JongRoul, 2022. "Effects of policy instruments on electric scooter adoption in Jakarta, Indonesia: A discrete choice experiment approach," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 373-384.
    7. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    8. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    9. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    10. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    11. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    12. Ji, Wei, 2018. "Data-Driven Behavior Analysis and Implications in Plug-in Electric Vehicle Policy Studies," Institute of Transportation Studies, Working Paper Series qt6dw4d18t, Institute of Transportation Studies, UC Davis.
    13. Yang, Shu & Cheng, Peng & Li, Jun & Wang, Shanyong, 2019. "Which group should policies target? Effects of incentive policies and product cognitions for electric vehicle adoption among Chinese consumers," Energy Policy, Elsevier, vol. 135(C).
    14. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    15. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    16. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Policy mechanisms to accelerate electric vehicle adoption: A qualitative review from the Nordic region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 719-731.
    17. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    18. Münzel, Christiane & Plötz, Patrick & Sprei, Frances & Gnann, Till, 2019. "How large is the effect of financial incentives on electric vehicle sales? – A global review and European analysis," Energy Economics, Elsevier, vol. 84(C).
    19. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    20. Santos, Georgina & Rembalski, Sebastian, 2021. "Do electric vehicles need subsidies in the UK?," Energy Policy, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt1rz000pf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.