IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v22y2018i4p773-784.html
   My bibliography  Save this article

Empirical Fuel Consumption and CO2 Emissions of Plug‐In Hybrid Electric Vehicles

Author

Listed:
  • Patrick Plötz
  • Simon Árpád Funke
  • Patrick Jochem

Abstract

Plug‐in hybrid electric vehicles (PHEVs) combine electric and conventional propulsion. Official fuel consumption values of PHEVs are based on standardized driving cycles, which show a growing discrepancy with real‐world fuel consumption. However, no comprehensive empirical results on PHEV fuel consumption are available, and the discrepancy between driving cycle and empirical fuel consumption has been conjectured to be large for PHEV. Here, we analyze real‐world fuel consumption data from 2,005 individual PHEVs of five PHEV models and observe large variations in individual fuel consumption with deviation from test‐cycle values in the range of 2% to 120% for PHEV model averages. Deviations are larger for short‐ranged PHEVs. Among others, range and vehicle power are influencing factors for PHEV model fuel consumption with average direct carbon dioxide (CO2) emissions decreasing by 2% to 3% per additional kilometer (km) of electric range. Additional simulations show that PHEVs recharged from renewable electricity can noteworthily reduce well‐to‐wheel CO2 emissions of passenger cars, but electric ranges should not exceed 200 to 300 km since battery production is CO2‐intense. Our findings indicate that regulations should (1) be based on real‐world fuel consumption measurements for PHEV, (2) take into account charging behavior and annual mileages, and (3) incentivize long‐ranged PHEV.

Suggested Citation

  • Patrick Plötz & Simon Árpád Funke & Patrick Jochem, 2018. "Empirical Fuel Consumption and CO2 Emissions of Plug‐In Hybrid Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 773-784, August.
  • Handle: RePEc:bla:inecol:v:22:y:2018:i:4:p:773-784
    DOI: 10.1111/jiec.12623
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12623
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Hao & Hewu Wang & Minggao Ouyang, 2020. "A novel state-of-charge-based method for plug-in hybrid vehicle electric distance analysis validated with actual driving data," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 459-475, March.
    2. Florian Kellner & Bernhard Lienland & Sebastian Utz, 2021. "A multi‐criteria decision‐making approach for assembling optimal powertrain technology portfolios in low GHG emission environments," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1412-1429, December.
    3. Küfeoğlu, Sinan & Khah Kok Hong, Dennis, 2020. "Emissions performance of electric vehicles: A case study from the United Kingdom," Applied Energy, Elsevier, vol. 260(C).
    4. Chengjian Xu & Paul Behrens & Paul Gasper & Kandler Smith & Mingming Hu & Arnold Tukker & Bernhard Steubing, 2023. "Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Tobias Frambach & Ralf Kleisch & Ralf Liedtke & Jochen Schwarzer & Egbert Figgemeier, 2022. "Environmental Impact Assessment and Classification of 48 V Plug-in Hybrids with Real-Driving Use Case Simulations," Energies, MDPI, vol. 15(7), pages 1-21, March.
    6. Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.
    7. Brand, Christian & Anable, Jillian & Ketsopoulou, Ioanna & Watson, Jim, 2020. "Road to zero or road to nowhere? Disrupting transport and energy in a zero carbon world," Energy Policy, Elsevier, vol. 139(C).
    8. Qi Liu & Jiahao Liu & Dunhu Liu, 2018. "Intelligent Multi-Objective Public Charging Station Location with Sustainable Objectives," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    9. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    10. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:22:y:2018:i:4:p:773-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.