IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3760-d176596.html
   My bibliography  Save this article

Intelligent Multi-Objective Public Charging Station Location with Sustainable Objectives

Author

Listed:
  • Qi Liu

    (Business School, Sichuan University, Chengdu 610065, China)

  • Jiahao Liu

    (Business School, Sichuan University, Chengdu 610065, China)

  • Dunhu Liu

    (School of Management, Chengdu University of Information Technology, Chengdu 610225, China)

Abstract

This paper investigates a multi-objective charging station location model with the consideration of the triple bottom line principle for green and sustainable development from economic, environmental and social perspectives. An intelligent multi-objective optimization approach is developed to handle this problem by integrating an improved multi-objective particle swarm optimization (MOPSO) process and an entropy weight method-based evaluation process. The MOPSO process is utilized to obtain a set of Pareto optimal solutions, and the entropy weight method-based evaluation process is utilized to select the final solution from Pareto optimal solutions. Numerical experiments are conducted based on large-scale GPS data. Experimental results demonstrate that the proposed approach can effectively solve the problem investigated. Moreover, the comparison of single-objective and multi-objective models validates the efficiency and necessity of the proposed multi-objective model in public charging station location problems.

Suggested Citation

  • Qi Liu & Jiahao Liu & Dunhu Liu, 2018. "Intelligent Multi-Objective Public Charging Station Location with Sustainable Objectives," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3760-:d:176596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Camp, Drew J. & Carter, Michael W. & Vannelli, Anthony, 1992. "A nonlinear optimization approach for solving facility layout problems," European Journal of Operational Research, Elsevier, vol. 57(2), pages 174-189, March.
    2. Wang, Ying-Wei & Wang, Chuan-Ren, 2010. "Locating passenger vehicle refueling stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 791-801, September.
    3. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    4. Patrick Plötz & Simon Árpád Funke & Patrick Jochem, 2018. "Empirical Fuel Consumption and CO2 Emissions of Plug‐In Hybrid Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 773-784, August.
    5. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    6. Wei Wang & Jingjie Chen & Qi Liu & Zhaoxia Guo, 2018. "Green Project Planning with Realistic Multi-Objective Consideration in Developing Sustainable Port," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    7. Xu, Min & Meng, Qiang & Liu, Kai & Yamamoto, Toshiyuki, 2017. "Joint charging mode and location choice model for battery electric vehicle users," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 68-86.
    8. Plötz, Patrick & Funke, Simon Árpád & Jochem, Patrick, 2018. "The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 331-340.
    9. Zhaoxia Guo & Haitao Liu & Dongqing Zhang & Jing Yang, 2017. "Green Supplier Evaluation and Selection in Apparel Manufacturing Using a Fuzzy Multi-Criteria Decision-Making Approach," Sustainability, MDPI, vol. 9(4), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianmin Jia & Chenhui Liu & Tao Wan, 2019. "Planning of the Charging Station for Electric Vehicles Utilizing Cellular Signaling Data," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    2. Zaneti, Letícia A.L. & Arias, Nataly Bañol & de Almeida, Madson C. & Rider, Marcos J., 2022. "Sustainable charging schedule of electric buses in a University Campus: A rolling horizon approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    2. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    3. Anjos, Miguel F. & Gendron, Bernard & Joyce-Moniz, Martim, 2020. "Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel," European Journal of Operational Research, Elsevier, vol. 285(1), pages 263-278.
    4. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    5. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    6. Faping Wang & Rui Chen & Lixin Miao & Peng Yang & Bin Ye, 2019. "Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    7. Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.
    8. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    9. Philipp Kluschke & Fabian Neumann, 2019. "Interaction of a Hydrogen Refueling Station Network for Heavy-Duty Vehicles and the Power System in Germany for 2050," Papers 1908.10119, arXiv.org.
    10. Jianmin Jia & Chenhui Liu & Tao Wan, 2019. "Planning of the Charging Station for Electric Vehicles Utilizing Cellular Signaling Data," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    11. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    12. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    13. Cen, Xuekai & Lo, Hong K. & Li, Lu & Lee, Enoch, 2018. "Modeling electric vehicles adoption for urban commute trips," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 431-454.
    14. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2019. "A four-step method for electric-vehicle charging facility deployment in a dense city: An empirical study in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 224-237.
    15. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    16. Zhaoxia Guo & Weiwei Le & Youkai Wu & Wei Wang, 2019. "A Multi-Step Approach Framework for Freight Forecasting of River-Sea Direct Transport without Direct Historical Data," Sustainability, MDPI, vol. 11(15), pages 1-15, August.
    17. Brand, Christian & Anable, Jillian & Ketsopoulou, Ioanna & Watson, Jim, 2020. "Road to zero or road to nowhere? Disrupting transport and energy in a zero carbon world," Energy Policy, Elsevier, vol. 139(C).
    18. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    19. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    20. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3760-:d:176596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.