Advanced Search
MyIDEAS: Login

Multivariate GARCH estimation via a Bregman-proximal trust-region method

Contents:

Author Info

  • St\'ephane Chr\'etien
  • Juan-Pablo Ortega
Registered author(s):

    Abstract

    The estimation of multivariate GARCH time series models is a difficult task mainly due to the significant overparameterization exhibited by the problem and usually referred to as the "curse of dimensionality". For example, in the case of the VEC family, the number of parameters involved in the model grows as a polynomial of order four on the dimensionality of the problem. Moreover, these parameters are subjected to convoluted nonlinear constraints necessary to ensure, for instance, the existence of stationary solutions and the positive semidefinite character of the conditional covariance matrices used in the model design. So far, this problem has been addressed in the literature only in low dimensional cases with strong parsimony constraints. In this paper we propose a general formulation of the estimation problem in any dimension and develop a Bregman-proximal trust-region method for its solution. The Bregman-proximal approach allows us to handle the constraints in a very efficient and natural way by staying in the primal space and the Trust-Region mechanism stabilizes and speeds up the scheme. Preliminary computational experiments are presented and confirm the very good performances of the proposed approach.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1101.5475
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1101.5475.

    as in new window
    Length:
    Date of creation: Jan 2011
    Date of revision:
    Handle: RePEc:arx:papers:1101.5475

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," CORE Discussion Papers 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Multivariate GARCH models," CREATES Research Papers 2008-06, School of Economics and Management, University of Aarhus.
    3. Y.K. Tse & Albert K.C. Tsui, 2000. "A Multivariate GARCH Model with Time-Varying Correlations," Econometrics 0004007, EconWPA.
    4. Manganelli, Simone & Ceci, Vladimiro & Vecchiato, Walter, 2002. "Sensitivity analysis of volatility: a new tool for risk management," Working Paper Series 0194, European Central Bank.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1101.5475. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.