Advanced Search
MyIDEAS: Login

A multivariate generalized independent factor GARCH model with an application to financial stock returns

Contents:

Author Info

  • Antonio García-Ferrer

    ()

  • Ester González-Prieto

    ()

  • Daniel Peña

    ()

Registered author(s):

    Abstract

    We propose a new multivariate factor GARCH model, the GICA-GARCH model , where the data are assumed to be generated by a set of independent components (ICs). This model applies independent component analysis (ICA) to search the conditionally heteroskedastic latent factors. We will use two ICA approaches to estimate the ICs. The first one estimates the components maximizing their non-gaussianity, and the second one exploits the temporal structure of the data. After estimating the ICs, we fit an univariate GARCH model to the volatility of each IC. Thus, the GICA-GARCH reduces the complexity to estimate a multivariate GARCH model by transforming it into a small number of univariate volatility models. We report some simulation experiments to show the ability of ICA to discover leading factors in a multivariate vector of financial data. An empirical application to the Madrid stock market will be presented, where we compare the forecasting accuracy of the GICA-GARCH model versus the orthogonal GARCH one.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://e-archivo.uc3m.es/bitstream/10016/3383/1/ws087528.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws087528.

    as in new window
    Length:
    Date of creation: Dec 2008
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws087528

    Contact details of provider:
    Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
    More information through EDIRC

    Related research

    Keywords: ICA; Multivariate GARCH; Factor models; Forecasting volatility;

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    2. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    3. Lanne, Markku & Saikkonen, Pentti, 2005. "A Multivariate Generalized Orthogonal Factor GARCH Model," MPRA Paper 23714, University Library of Munich, Germany.
    4. Francis X. Diebold & Marc Nerlove, 1986. "The dynamics of exchange rate volatility: a multivariate latent factor ARCH model," Special Studies Papers 205, Board of Governors of the Federal Reserve System (U.S.).
    5. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702.
    6. Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
    7. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    8. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Dynamic Factor GARCH: Multivariate Volatility Forecast for a Large Number of Series," LEM Papers Series 2006/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    10. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws087528. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.