Advanced Search
MyIDEAS: Login

Well-to-Wheels Energy and Greenhouse Gas Emission Results and Issues of Fuel Ethanol

Contents:

Author Info

  • Wang, Michael Q.
Registered author(s):

    Abstract

    The use of fuel ethanol in the United States has increased from fewer than 200 million gallons (gal) at the beginning of the US fuel ethanol program in 1980 to 6.5 billion gal in 2007. The recent federally adopted Energy Independence and Security Act of 2007 established the goal of 36 billion gal of biofuel use in the United States by 2022, of which 15 billion gal will be corn-based ethanol. In addition, the promotion of low-carbon fuel standards (LCFS) by California and several other states could help increased use of ethanol, especially cellulosic ethanol. In the United States, corn ethanol is produced through the fermentation of corn in dry and wet milling plants, most of which are located in the Midwest. In 2006, about 82% of the total US fuel ethanol was produced from dry milling plants, and the remaining 18% from wet milling plants (Renewable Fuels Association, 2007). Ethanol can be produced from cellulosic biomass through fermentation of cellulose and semicellulose. The US Department of Energy (DOE) has been undertaking extensive research and development (R&D) efforts for cellulosic ethanol technologies. Since 1997, Argonne National Laboratory has been evaluating the energy and emission effects of fuel ethanol relative to those of petroleum gasoline. In 1997, Argonne National Laboratory published its findings from an ethanol analysis conducted for the State of Illinois (Wang et al., 1997). With DOE support, Argonne National Laboratory has continued its efforts to analyze the effects of fuel ethanol (Wang et al., 1999a,b; Wang et al., 2003; Wu et al., 2005; and Wu et al., 2006). As fuel ethanol production and usage in the United States have rapidly expanded in the past several years, corn ethanol plant technologies have been evolving. In addition, while corn yield per acre continues to increase, concerns have been raised that increased corn farming could result in switches in crop farming in the United States and potential land use changes in other countries. These factors together could cause different energy and greenhouse gas (GHG) emission results for corn ethanol. This chapter presents Argonne National Laboratory’s updated energy and GHG emission results for fuel ethanol.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://purl.umn.edu/49098
    Download Restriction: no

    Bibliographic Info

    Paper provided by Farm Foundation in its series Lifecycle Carbon Footprint of Biofuels Workshop, January 29, 2008, Miami Beach, Florida with number 49098.

    as in new window
    Length:
    Date of creation: 2008
    Date of revision:
    Handle: RePEc:ags:fflc08:49098

    Contact details of provider:
    Postal: 1211 West 22nd St., Suite 216, Oak Brook, IL 60523-2197
    Phone: (630) 571-9393
    Fax: (630) 571-9580
    Web page: http://www.farmfoundation.org/
    More information through EDIRC

    Related research

    Keywords: Environmental Economics and Policy;

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers 12881, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Wang, Michael & Huo, Hong & Arora, Salil, 2011. "Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context," Energy Policy, Elsevier, vol. 39(10), pages 5726-5736, October.
    2. Jensen, Kimberly L. & Clark, Christopher D. & English, Burton C. & Menard, R. Jamey & Skahan, Denise K. & Marra, Adrienne C., 2010. "Willingness to pay for E85 from corn, switchgrass, and wood residues," Energy Economics, Elsevier, vol. 32(6), pages 1253-1262, November.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:ags:fflc08:49098. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.