IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v9y2020i5ne375.html
   My bibliography  Save this article

Multifunctional perennial production systems for bioenergy: performance and progress

Author

Listed:
  • Oskar Englund
  • Ioannis Dimitriou
  • Virginia H. Dale
  • Keith L. Kline
  • Blas Mola‐Yudego
  • Fionnuala Murphy
  • Burton English
  • John McGrath
  • Gerald Busch
  • Maria Cristina Negri
  • Mark Brown
  • Kevin Goss
  • Sam Jackson
  • Esther S. Parish
  • Jules Cacho
  • Colleen Zumpf
  • John Quinn
  • Shruti K. Mishra

Abstract

As the global population increases and becomes more affluent, biomass demands for food and biomaterials will increase. Demand growth is further accelerated by the implementation of climate policies and strategies to replace fossil resources with biomass. There are, however, concerns about the size of the prospective biomass demand and the environmental and social consequences of the corresponding resource mobilization, especially concerning impacts from the associated land‐use change. Strategically integrating perennials into landscapes dominated by intensive agriculture can, for example, improve biodiversity, reduce soil erosion and nutrient emissions to water, increase soil carbon, enhance pollination, and avoid or mitigate flooding events. Such “multifunctional perennial production systems” can thus contribute to improving overall land‐use sustainability, while maintaining or increasing overall biomass productivity in the landscape. Seven different cases in different world regions are here reviewed to exemplify and evaluate (a) multifunctional production systems that have been established to meet emerging bioenergy demands, and (b) efforts to identify locations where the establishment of perennial crops will be particularly beneficial. An important barrier towards wider implementation of multifunctional systems is the lack of markets, or policies, compensating producers for enhanced ecosystem services and other environmental benefits. This deficiency is particularly important since prices for fossil‐based fuels are low relative to bioenergy production costs. Without such compensation, multifunctional perennial production systems will be unlikely to contribute to the development of a sustainable bioeconomy. This article is categorized under: Bioenergy > Systems and Infrastructure Bioenergy > Climate and Environment Energy Policy and Planning > Climate and Environment

Suggested Citation

  • Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
  • Handle: RePEc:bla:wireae:v:9:y:2020:i:5:n:e375
    DOI: 10.1002/wene.375
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.375
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    2. Jensen, Kimberly L. & Clark, Christopher D. & Ellis, Pamela & English, Burton C. & Menard, R. Jamey & Walsh, Marie E., 2006. "Farmer Willingness to Grow Switchgrass for Energy Production," 2006 Annual meeting, July 23-26, Long Beach, CA 21355, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Mola-Yudego, Blas & Dimitriou, Ioannis & Gonzalez-Garcia, Sara & Gritten, David & Aronsson, Pär, 2014. "A conceptual framework for the introduction of energy crops," Renewable Energy, Elsevier, vol. 72(C), pages 29-38.
    4. Raphael Slade & Ausilio Bauen & Robert Gross, 2014. "Global bioenergy resources," Nature Climate Change, Nature, vol. 4(2), pages 99-105, February.
    5. Thomas Buchholz & Stephen Prisley & Gregg Marland & Charles Canham & Neil Sampson, 2014. "Uncertainty in projecting GHG emissions from bioenergy," Nature Climate Change, Nature, vol. 4(12), pages 1045-1047, December.
    6. Göran Berndes & Serina Ahlgren & Pål Börjesson & Annette L. Cowie, 2013. "Bioenergy and land use change—state of the art," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(3), pages 282-303, May.
    7. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    8. Maureen Kilkenny & Mark D. Partridge, 2009. "Export Sectors and Rural Development," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 910-929.
    9. Murphy, Fionnuala & McDonnell, Kevin, 2017. "Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry," Energy Policy, Elsevier, vol. 104(C), pages 80-88.
    10. Ronald S. Zalesny & Göran Berndes & Ioannis Dimitriou & Uwe Fritsche & Constance Miller & Mark Eisenbies & Solomon Ghezehei & Dennis Hazel & William L. Headlee & Blas Mola‐Yudego & M. Cristina Negri &, 2019. "Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    11. Dale, Virginia H. & Kline, Keith L. & Buford, Marilyn A. & Volk, Timothy A. & Tattersall Smith, C. & Stupak, Inge, 2016. "Incorporating bioenergy into sustainable landscape designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1158-1171.
    12. Holland, R.A. & Eigenbrod, F. & Muggeridge, A. & Brown, G. & Clarke, D. & Taylor, G., 2015. "A synthesis of the ecosystem services impact of second generation bioenergy crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiefer, Katharina & Kremer, Jasper & Zeitner, Philipp & Winkler, Bastian & Wagner, Moritz & von Cossel, Moritz, 2023. "Monetizing ecosystem services of perennial wild plant mixtures for bioenergy," Ecosystem Services, Elsevier, vol. 61(C).
    2. Franz Grossauer & Gernot Stoeglehner, 2023. "Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda," Land, MDPI, vol. 12(1), pages 1-22, January.
    3. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    4. Yuki Hamada & Colleen R. Zumpf & Jules F. Cacho & DoKyoung Lee & Cheng-Hsien Lin & Arvid Boe & Emily Heaton & Robert Mitchell & Maria Cristina Negri, 2021. "Remote Sensing-Based Estimation of Advanced Perennial Grass Biomass Yields for Bioenergy," Land, MDPI, vol. 10(11), pages 1-22, November.
    5. Baral, Nawa Raj & Mishra, Shruti K. & George, Anthe & Gautam, Sagar & Mishra, Umakant & Scown, Corinne D., 2022. "Multifunctional landscapes for dedicated bioenergy crops lead to low-carbon market-competitive biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    2. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    3. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    4. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Libutti, Angela, 2018. "Agricultural “greening” and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy)," Land Use Policy, Elsevier, vol. 70(C), pages 591-600.
    5. Repo, Anna & Ahtikoski, Anssi & Liski, Jari, 2015. "Cost of turning forest residue bioenergy to carbon neutral," Forest Policy and Economics, Elsevier, vol. 57(C), pages 12-21.
    6. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    7. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    8. Jiang, Yong & Swinton, Scott M., 2008. "Market Interactions, Farmer Choices, and the Sustainability of Growing Advanced Biofuels," Staff Paper Series 43634, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    9. Ronald S. Zalesny & Göran Berndes & Ioannis Dimitriou & Uwe Fritsche & Constance Miller & Mark Eisenbies & Solomon Ghezehei & Dennis Hazel & William L. Headlee & Blas Mola‐Yudego & M. Cristina Negri &, 2019. "Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    10. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    11. Gouzaye, Amadou & Epplin, Francis, 2016. "Restricting Switchgrass Biomass Feedstock Production to Marginal Land to Limit Competition with Food Production," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229200, Southern Agricultural Economics Association.
    12. Miyuki Iiyama & Athanase Mukuralinda & Jean Damascene Ndayambaje & Bernard Musana & Alain Ndoli & Jeremias G. Mowo & Dennis Garrity & Stephen Ling & Vicky Ruganzu, 2018. "Tree-Based Ecosystem Approaches (TBEAs) as Multi-Functional Land Management Strategies—Evidence from Rwanda," Sustainability, MDPI, vol. 10(5), pages 1-24, April.
    13. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    14. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    15. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    16. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    17. Koponen, Kati & Soimakallio, Sampo & Kline, Keith L. & Cowie, Annette & Brandão, Miguel, 2018. "Quantifying the climate effects of bioenergy – Choice of reference system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2271-2280.
    18. Di Lucia, Lorenzo & Usai, Domenico & Woods, Jeremy, 2018. "Designing landscapes for sustainable outcomes – The case of advanced biofuels," Land Use Policy, Elsevier, vol. 73(C), pages 434-446.
    19. Pulighe, Giuseppe & Bonati, Guido & Colangeli, Marco & Morese, Maria Michela & Traverso, Lorenzo & Lupia, Flavio & Khawaja, Cosette & Janssen, Rainer & Fava, Francesco, 2019. "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 58-70.
    20. Yang, Lan & Wang, Xue-Chao & Dai, Min & Chen, Bin & Qiao, Yuanbo & Deng, Huijing & Zhang, Dingfan & Zhang, Yizhe & Villas Bôas de Almeida, Cecília Maria & Chiu, Anthony S.F. & Klemeš, Jiří Jaromír & W, 2021. "Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects," Energy, Elsevier, vol. 228(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:9:y:2020:i:5:n:e375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.